Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal orthoplectic fusion frames from mutually unbiased bases and block designs


Authors: Bernhard G. Bodmann and John I. Haas
Journal: Proc. Amer. Math. Soc. 146 (2018), 2601-2616
MSC (2010): Primary 42C15
DOI: https://doi.org/10.1090/proc/13956
Published electronically: February 8, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The construction of optimal line packings in real or complex Euclidean spaces has been shown to be a tantalizingly difficult task, because it includes the problem of finding maximal sets of equiangular lines. In the regime where equiangular lines are not possible, some optimal packings are known, for example, those achieving the orthoplex bound related to maximal sets of mutually unbiased bases. In this paper, we investigate the packing of subspaces instead of lines and determine the implications of maximality in this context. We leverage the existence of real or complex maximal mutually unbiased bases with a combinatorial design strategy in order to find optimal subspace packings that achieve the orthoplex bound. We also show that maximal sets of mutually unbiased bases convert between coordinate projections associated with certain balanced incomplete block designs and Grassmannian 2-designs. Examples of maximal orthoplectic fusion frames already appeared in the works by Shor, Sloane, and by Zauner. They are realized in dimensions that are a power of four in the real case or a power of two in the complex case.


References [Enhancements On Off] (What's this?)

  • [1] D. M. Appleby, SIC-POVMS and MUBS: geometrical relationships in prime dimension, Foundations of probability and physics--5, AIP Conf. Proc., vol. 1101, Amer. Inst. Phys., New York, 2009, pp. 223-232. MR 2778089
  • [2] D. M. Appleby, Symmetric informationally complete measurements of arbitrary rank, Opt. Spectroscop. 103 (2007), no. 3, 416-428.
  • [3] Christine Bachoc, Linear programming bounds for codes in Grassmannian spaces, IEEE Trans. Inform. Theory 52 (2006), no. 5, 2111-2125. MR 2234468, https://doi.org/10.1109/TIT.2006.872973
  • [4] Christine Bachoc, Eiichi Bannai, and Renaud Coulangeon, Codes and designs in Grassmannian spaces, Discrete Math. 277 (2004), no. 1-3, 15-28. MR 2033722, https://doi.org/10.1016/S0012-365X(03)00151-1
  • [5] C. Bachoc and M. Ehler, Tight $ p$-fusion frames, Appl. Comput. Harmon. Anal. 35 (2013), no. 1, 1-15. MR 3053743, https://doi.org/10.1016/j.acha.2012.07.001
  • [6] Alexander Barg and Dmitry Yu. Nogin, Bounds on packings of spheres in the Grassmann manifold, IEEE Trans. Inform. Theory 48 (2002), no. 9, 2450-2454. MR 1929456, https://doi.org/10.1109/TIT.2002.801469
  • [7] Bernhard G. Bodmann and John Haas, Achieving the orthoplex bound and constructing weighted complex projective 2-designs with Singer sets, Linear Algebra Appl. 511 (2016), 54-71. MR 3557826, https://doi.org/10.1016/j.laa.2016.09.005
  • [8] P. O. Boykin, M. Sitharam, M. Tarifi, and P. Wocjan, Real mutually unbiased bases, arXiv:quant-ph/0502024v2.
  • [9] P. Oscar Boykin, Meera Sitharam, Pham Huu Tiep, and Pawel Wocjan, Mutually unbiased bases and orthogonal decompositions of Lie algebras, Quantum Inf. Comput. 7 (2007), no. 4, 371-382. MR 2363400
  • [10] A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel, $ Z_4$-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, Proc. London Math. Soc. (3) 75 (1997), no. 2, 436-480. MR 1455862, https://doi.org/10.1112/S0024611597000403
  • [11] A. R. Calderbank, R. H. Hardin, E. M. Rains, P. W. Shor, and N. J. A. Sloane, A group-theoretic framework for the construction of packings in Grassmannian spaces, J. Algebraic Combin. 9 (1999), no. 2, 129-140. MR 1679247, https://doi.org/10.1023/A:1018673825179
  • [12] P. J. Cameron and J. J. Seidel, Quadratic forms over $ GF(2)$, Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 1-8. MR 0327801
  • [13] John H. Conway, Ronald H. Hardin, and Neil J. A. Sloane, Packing lines, planes, etc.: packings in Grassmannian spaces, Experiment. Math. 5 (1996), no. 2, 139-159. MR 1418961
  • [14] P. Delsarte, J. M. Goethals, and J. J. Seidel, Bounds for systems of lines, and Jacobi polynomials, Philips Research Reports 30 (1975), 91 pp.
  • [15] Chris Godsil and Aidan Roy, Equiangular lines, mutually unbiased bases, and spin models, European J. Combin. 30 (2009), no. 1, 246-262. MR 2460230, https://doi.org/10.1016/j.ejc.2008.01.002
  • [16] Gary Greaves, Jacobus H. Koolen, Akihiro Munemasa, and Ferenc Szöllősi, Equiangular lines in Euclidean spaces, J. Combin. Theory Ser. A 138 (2016), 208-235. MR 3423477, https://doi.org/10.1016/j.jcta.2015.09.008
  • [17] J. Haantjes, Equilateral point-sets in elliptic two- and three-dimensional spaces, Nieuw Arch. Wiskunde (2) 22 (1948), 355-362. MR 0023530
  • [18] Oliver Henkel, Sphere-packing bounds in the Grassmann and Stiefel manifolds, IEEE Trans. Inform. Theory 51 (2005), no. 10, 3445-3456. MR 2236421, https://doi.org/10.1109/TIT.2005.855594
  • [19] S. G. Hoggar, $ t$-designs in projective spaces, European J. Combin. 3 (1982), no. 3, 233-254. MR 679208, https://doi.org/10.1016/S0195-6698(82)80035-8
  • [20] Selmer Johnson, Upper bounds for constant weight error correcting codes, Discrete Math. 3 (1972), 109-124. MR 0379001, https://doi.org/10.1016/0012-365X(72)90027-1
  • [21] Tom H. Koornwinder, A note on the absolute bound for systems of lines, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math. 38 (1976), no. 2, 152-153. MR 0404174
  • [22] Gitta Kutyniok, Ali Pezeshki, Robert Calderbank, and Taotao Liu, Robust dimension reduction, fusion frames, and Grassmannian packings, Appl. Comput. Harmon. Anal. 26 (2009), no. 1, 64-76. MR 2467935, https://doi.org/10.1016/j.acha.2008.03.001
  • [23] Nicholas LeCompte, William J. Martin, and William Owens, On the equivalence between real mutually unbiased bases and a certain class of association schemes, European J. Combin. 31 (2010), no. 6, 1499-1512. MR 2660399, https://doi.org/10.1016/j.ejc.2009.11.014
  • [24] P. W. H. Lemmens and J. J. Seidel, Equiangular lines, J. Algebra 24 (1973), 494-512. MR 0307969, https://doi.org/10.1016/0021-8693(73)90123-3
  • [25] V. I. Levenshteĭn, Designs as maximum codes in polynomial metric spaces, Interactions between algebra and combinatorics, Acta Appl. Math. 29 (1992), no. 1-2, 1-82. MR 1192833, https://doi.org/10.1007/BF00053379
  • [26] Pedro G. Massey, Mariano A. Ruiz, and Demetrio Stojanoff, The structure of minimizers of the frame potential on fusion frames, J. Fourier Anal. Appl. 16 (2010), no. 4, 514-543. MR 2671171, https://doi.org/10.1007/s00041-009-9098-5
  • [27] A. Neumaier, Graph representations, two-distance sets, and equiangular lines, Linear Algebra Appl. 114/115 (1989), 141-156. MR 986870, https://doi.org/10.1016/0024-3795(89)90456-4
  • [28] R. A. Rankin, The closest packing of spherical caps in $ n$ dimensions, Proc. Glasgow Math. Assoc. 2 (1955), 139-144. MR 0074013
  • [29] Aidan Roy, Bounds for codes and designs in complex subspaces, J. Algebraic Combin. 31 (2010), no. 1, 1-32. MR 2577476, https://doi.org/10.1007/s10801-009-0170-7
  • [30] Julian Schwinger, Unitary operator bases, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 570-579. MR 0115648
  • [31] A. J. Scott and M. Grassl, Symmetric informationally complete positive-operator-valued measures: a new computer study, J. Math. Phys. 51 (2010), no. 4, 042203, 16. MR 2662471, https://doi.org/10.1063/1.3374022
  • [32] P. W. Shor and N. J. A. Sloane, A family of optimal packings in Grassmannian manifolds, J. Algebraic Combin. 7 (1998), no. 2, 157-163. MR 1609881, https://doi.org/10.1023/A:1008608404829
  • [33] V. M. Sidelnikov, Upper bounds on the cardinality of a binary code with a given minimum distance, translated from the Russian by A. M. Odlyzko (Problemy Peredači Informacii 10 (1974), no. 2, 43-51), Information and Control 28 (1975), no. 4, 292-303. MR 0392157
  • [34] Mátyás A. Sustik, Joel A. Tropp, Inderjit S. Dhillon, and Robert W. Heath Jr., On the existence of equiangular tight frames, Linear Algebra Appl. 426 (2007), no. 2-3, 619-635. MR 2350682, https://doi.org/10.1016/j.laa.2007.05.043
  • [35] J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math. 28 (1966), 335-348. MR 0200799
  • [36] L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. on Information Theory 20 (1974), no. 3, 397-399.
  • [37] William K. Wootters and Brian D. Fields, Optimal state-determination by mutually unbiased measurements, Ann. Physics 191 (1989), no. 2, 363-381. MR 1003014, https://doi.org/10.1016/0003-4916(89)90322-9
  • [38] Pengfei Xia, Shengli Zhou, and Georgios B. Giannakis, Achieving the Welch bound with difference sets, IEEE Trans. Inform. Theory 51 (2005), no. 5, 1900-1907. MR 2235693, https://doi.org/10.1109/TIT.2005.846411
  • [39] Gerhard Zauner, Quantum designs: foundations of a noncommutative design theory, Int. J. Quantum Inf. 9 (2011), no. 1, 445-507. MR 2931102, https://doi.org/10.1142/S0219749911006776

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42C15

Retrieve articles in all journals with MSC (2010): 42C15


Additional Information

Bernhard G. Bodmann
Affiliation: Department of Mathematics, 651 Philip G. Hoffman Hall, University of Houston, Houston, Texas 77204-3008
Email: bgb@math.uh.edu

John I. Haas
Affiliation: Department of Mathematics, 219 Mathematical Sciences Building, University of Missouri, Columbia, Missouri 65211
Email: haasji@missouri.edu

DOI: https://doi.org/10.1090/proc/13956
Received by editor(s): September 29, 2016
Received by editor(s) in revised form: September 11, 2017
Published electronically: February 8, 2018
Additional Notes: The first author was supported in part by NSF DMS 1412524.
The second author was supported by NSF ATD 1321779.
Communicated by: Pham Huu Tiep
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society