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CLASSIFICATION OF ENTIRE SOLUTIONS

OF (−Δ)Nu+ u−(4N−1) = 0 WITH EXACT LINEAR GROWTH

AT INFINITY IN R2N−1

QUỐC ANH NGÔ

(Communicated by Guofang Wei)

Abstract. In this paper, we study global positive C2N -solutions of the ge-
ometrically interesting equation (−Δ)Nu + u−(4N−1) = 0 in R2N−1. Using
the sub poly-harmonic property for positive C2N -solutions of the differential
inequality (−Δ)Nu < 0 in R2N−1, we prove that any C2N -solution u of the
equation having linear growth at infinity must satisfy the integral equation

u(x) =

∫
R2N−1

|x− y|u−(4N−1)(y)dy

up to a multiple constant and hence take the following form:

u(x) = (1 + |x|2)1/2

in R2N−1 up to dilations and translations. We also provide several non-
existence results for positive C2N -solutions of (−Δ)Nu = u−(4N−1) inR2N−1.

1. Introduction

In this paper, we are interested in classification of entire solutions of the geo-
metrically interesting equation

(1.1) (−Δ)Nu+ u−(4N−1) = 0

in R2N−1 with N � 2. In order to understand the significance of studying (1.1)
and the reason why we work on this equation, let us briefly exploit its root in
conformal geometry. Loosely speaking, equations of the form (1.1) come from the
problem of prescribing Q-curvature on S

2N−1, which is associated with the con-
formally covariant GJMS operator with the principle part (−Δg)

2N−1, discovered
by Graham–Jenne–Mason–Sparling [GJMS92]. This operator is a high-order ellip-
tic operator analogue with the well-known conformal Laplacian in the problem of
prescribing scalar curvature.

Given a dimensional constant n � 3, let us consider the model (Sn, gSn) equipped
with the standard metric gSn . In this case, it is well-known that the GJMS operator
of order 2N with N � 2 is given by

(1.2) P2N,gSn (·) =
N∏

k=1

(
−ΔgSn +

(n
2
− k

)(n
2
+ k − 1

))
.
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(Note that the sign of P2N,gSn given by (1.2) is different from the one in [Juh13, page
1353] by a factor (−1)N .) The GJMS operator (1.2) is conformally covariant in the
sense that if we conformally change the standard metric gSn to a new metric g̃ via
g̃ = v4/(n−2N)gSn for some smooth function v on S

n, then the two operators P2N,g̃

and P2N,gSn are related via

(1.3) P2N,g̃(ϕ) = v−
n+2N
n−2N P2N,gSn (vϕ)

for any smooth, positive function ϕ on S
n. In (1.3) if we set ϕ ≡ 1, then we obtain

P2N,gSn (v) = P2N,g̃(1)v
n+2N
n−2N .

Thanks to [Juh13, eq. (1.12)] and our convention for the sign of P2N,gSn , we know
that

P2N,g̃(1) =
(n
2
−N

)
Q2N,g̃

for some scalar function Q2N,g̃ knowing that the Q-curvature is associated with the
GJMS operator P2N,g̃. From this we obtain the equation

(1.4) P2N,gSn (v) =
(n
2
−N

)
Q2N,g̃ v

n+2N
n−2N .

Let us now limit ourselves to the case n = 2N−1. Then up to a multiple of positive
constants, (1.4) becomes

(1.5) P2N,g
S2N−1

(v) = −Q2N,g̃ v
−(4N−1).

Toward understanding the structure of the solution set of (1.5), let us only consider
the case when Q2N,g̃ is constant. Upon a suitable scaling, we may assume that
Q2N,g̃ = ±1. Therefore, (1.5) becomes

(1.6) P2N,g
S2N−1

(v) = ∓v−(4N−1).

Let us now denote by π : S2N−1 → R2N−1 the stereographic projection and set

(1.7) u(x) = v(π−1(x))
(1 + |x|2

2

)1/2

for x ∈ R2N−1. Thanks to [Gra07, Proposition 1], we can project (1.2) with

n = 2N − 1 from S
2N−1 to R2N−1 to get

(1.8)
( 2

1 + |x|2
)− 4N−1

2

(−Δ)Nu(x) = (P2N,g
S2N−1

(v) ◦ π−1)(x).

Therefore, via the stereographic projection π and up to a multiplication of positive
constant, combining (1.8) and (1.6) gives

(−Δ)Nu = ∓u−(4N−1).

In the preceding equation, if we consider the minus sign, the resulting equation
leads us to (1.1), while for the plus sign, we arrive at the equation

(1.9) (−Δ)Nu = u−(4N−1)

in R2N−1.
As far as we know, several special cases of (1.1) have already been studied in the

literature. To be precise, when N = 2, the equation

(1.10) Δ2u+ u−7 = 0
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in R3 was studied by Choi and Xu in [CX09] as well as by McKenna and Reichel
in [KR03]. The main result in [CX09] is that if u solves (1.10) with exact linear
growth at infinity in the sense that lim|x|→+∞ u(x)/|x| exists, then u solves the
integral equation

u(x) =

∫
R3

|x− y|u(y)−7dy.

From this integral representation, by a beautiful classification of positive solutions
of integral equations by Li [Li04] and Xu [Xu05], it is widely known that u(x) =
(1 + |x|2)1/2 up to dilations and translations. When N = 3, (1.1) leads us to the
equation

(1.11) Δ3u = u−11

in R5. Its associated integral equation becomes

u(x) =

∫
R5

|x− y|u(y)−11dy.

This integral equation was studied by Feng and Xu in [FX13]. The main result in
[FX13] tell us that the only entire positive solution of (1.11) is u(x) = (1+ |x|2)1/2
up to dilations and translations. As a counterpart of (1.11), the triharmonic Lane–
Emden equation

Δ3u+ |u|p−1u = 0

in Rn with p > 1 was recently studied by Luo, Wei, and Zou [LWZ16]; see also
[GW08]. We take this chance to remember a work by Ma and Wei in [MW08] where
the authors studied the equation

Δu = uτ

with τ < 0. Clearly, this equation has a form similar to that of (1.1) with N = 1.
In the present paper, following the main question posted in [CX09,Gue12], we

initiate our study of the structure of the solution set of (1.1) and (1.9). To be
precise, for (1.1), we are able to classify all solutions with exact linear growth at
infinity. The following theorem is the content of this result.

Theorem 1.1. All solutions of partial differential equation (1.1) which satisfy

(1.12) lim
|x|→+∞

u(x)

|x| = α uniformly

for some non-negative finite constant α verify the following integral equation:

u(x) = c0

∫
R2N−1

|x− y|u−(4N−1)(y)dy.

Consequently, up to dilations and translations, the only entire solution of (1.1)
satisfying (1.12) is

u(x) = (1 + |x|2)1/2

in R2N−1.

As already discussed in [CX09], a major reason for imposing assumption (1.12)
in studying (1.1) follows from the fact that entire solutions of (1.1) with exact linear
growth at infinity correspond to complete conformal metrics on S

2N−1, thanks to
(1.7). We expect that (1.1), if frozen from geometric interpretation, also admits
entire solutions with different growth at infinity. This is supported by considering
(1.1) when N = 2; see [Gue12,DN17].
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For (1.9), we prove that in fact this equation does not admit solutions with exact
linear growth at infinity.

Theorem 1.2. There is no positive C2N -solution to (1.9) which satisfies

lim
|x|→+∞

u(x)

|x| = α uniformly

for some positive finite constant α.

We note that a similar non-existence result for solutions of (1.9) was obtained by
Xu and Yang in [XY02, Lemma 4.3]. To be exact, it was proved in [XY02] that there
is no C4-solution u of (1.9) with N = 2 in R3 which is bounded from below away
from zero with the following conditions:

∫
R3 u−6dx < +∞,

∫
R3(Δu)2dx < +∞. In

the following result, we generalize this result for solutions of (1.9).

Theorem 1.3. There is no positive C2N -solution u to (1.9) which satisfies:

(1)
∫
R2N−1 u−(4N−2)dx < ∞,

(2) u � 1 and u(0) = 1, and

(3) (−Δ)iu ∈ L2(R2N−1) for all i = 1, 2, . . . , N − 1.

As in [XY02], the main ingredients in the proof of Theorem 1.3 are mean value
properties for biharmonic functions and the Liouville theorem. Note that in the
proof of Theorem 1.2, we exploit the super poly-harmonic property for solutions
of (1.9) under the linear growth assumption. In the proof of Theorem 1.3 we also
exploit the super poly-harmonic property for solutions of (1.9) without using the
linear growth property.

In the next section, several fundamental estimates for solutions of (1.1) are
provided. These estimates are useful for obtaining an integral representation for all
(−Δ)ku for k from N−1 down to 0. Once we have an integral representation for u,
we are able to classify solutions. In the last part of the paper, we prove Theorems
1.1, 1.2, and 1.3.

2. Elementary estimates

In this section, we set up some notation and provide elementary estimates nec-
essary to deal with elliptic equations with poly-harmonic operators. We note that
although our approach is similar to the one used in [CX09], in several places, we
have to introduce new ideas to deal with high-order elliptic equations.

We will denote the sphere in R2N−1 of radius r and center x0 by ∂B(x0, r) and

its included solid ball in R2N−1 by B(x0, r). We introduce the average of a function
f on ∂B(x0, r) by

f(x0, r) =
1

ω2N−1r2N−2

∫
∂B(x0,r)

f(x)dσx =

∫
--
∂B(x0,r)

f(x)dσx,

which depends only on the radius r. Here by ω2N−1 we mean the volume of the unit
sphere ∂B(x0, 1) centered at x0 sitting in R2N−1. (Note that ωn = 2πn/2/Γ(n/2)
for all n.) Throughout the paper, if x0 = O, then we drop O in the notation f(O, r)
for simplicity.

We also denote various dimensional constants

(2.1)

⎧⎨
⎩

cN−1 = ω−1
2N−1,

cN−k−1 =
cN−k

2k(2N − 2k − 3)
for 1 � k � N − 2.
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Clearly ck > 0 for all 1 � k � N − 2. We also let c0 > 0 be

(2.2) c0 =
c1

2N − 2
.

Keep in mind that −cN−1|x − y|−(2N−3) is the Green function of the operator Δ

in R2N−1.
We list here the following useful inequality whose proof is exactly the same as

[CX09, Lemma 2.1] in R3.

Lemma 2.1. For any point x0 in R2N−1 and any q, r > 0, there holds(∫
--
∂B(x0,r)

fdσ
)−q

�
∫
--
∂B(x0,r)

f−qdσ.

Using Lemma 2.1, we obtain from (1.1) the differential inequality

(2.3) (−Δ)Nu+ u−(4N−1) � 0.

In particular, there holds (−Δ)Nu < 0 everywhere in R2N−1. The next lemma,
which is known as the sub-poly-harmonic property of u, is of crucial importance as
it allows us to deal with high-order equations.

Lemma 2.2. All positive solutions u of (1.1) with the growth (1.12) satisfy

(−Δ)ku < 0

everywhere in R2N−1 for each k = 1, . . . , N − 1.

This lemma can be proved by using a general result from [Ngo17, Theorem 2];
hence we omit the details. In the rest of this section, we show how important
Lemma 2.2 is by exploiting further properties of solutions of (1.1). First, we recall
the following well-known result in [CMM93, Example 2.3].

Lemma 2.3. Let w be a radially symmetric function satisfying

(−Δ)kw � 0

everywhere in Rn for each k = 0, . . . ,m with n > 2m. Then necessarily we have

rw′(r) + (n− 2m)w(r) � 0, rw′′(r) + (n+ 1− 2m)w′(r) � 0

everywhere in Rn.

Using Lemma 2.3 we can prove that u′′ has a sign. Such a result has some role
in our analysis and cannot be obtained directly from the inequality Δu > 0. In
particular, this helps us to deduce that any solution of (1.1) must grow at least
linearly at infinity; see Lemma 2.6 below.

Lemma 2.4. All positive solutions u of (1.1) with the growth (1.12) satisfy

u′′(r) � 0

for any r > 0.

Proof. Thanks to Lemma 2.2 and (1.1), with v = −Δu there holds

(−Δ)kv < 0

everywhere in R2N−1 for any k = 0, . . . , N − 1. Since 2N − 1 > 2(N − 1), we can
apply Lemma 2.3 to get

rv′(r) + v(r) � 0, rv′′(r) + 2v′(r) � 0.
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Using the formula −r2−2N (r2N−2u′)′ = v and the inequality rv′+v < 0, we deduce
that

−(r2N−2u′)′′ =(r2N−2v)′ = (2N − 2)r2N−3v + r2N−2v′

=r2N−3
(
rv′ + v

)
+ (2N − 3)r2N−3v

�(2N − 3)r2N−3v.

Thus, we have just proved that

−(r2N−2u′)′′ � (2N − 3)r2N−3v = (2N − 3)r−1(−r2N−2u′)′.

Therefore, if we set w = r2N−2u′, then we obtain

(−rw′ + (2N − 2)w)′ = −rw′′ + (2N − 3)w′ � 0.

By definition, the function rw′ − (2N − 2)w vanishes at r = 0 and is strictly
increasing on (0,+∞). It follows that

(2.4) r(r2N−2u′)′ � (2N − 2)r2N−2u′

for any r � 0, which is equivalent to

r2N−1u′′ + (2N − 2)r2N−2u′ � (2N − 2)r2N−2u′

for any r � 0. Hence, there holds

(2.5) r2N−1u′′ � 0.

Hence u′′(r) � 0 for all r > 0 as claimed. �

In the following lemma, we study the asymptotic behavior of (−Δ)ku at infin-
ity. Such a result is useful when we apply the Liouville theory to get an integral
representation for (−Δ)ku.

Lemma 2.5. All positive solutions u of (1.1) with the growth (1.12) satisfy

lim
r→+∞

(−Δ)ku(r) = 0

for each k = 1, . . . , N − 1.

Proof. Fix k ∈ {1, . . . , N − 1} and denote

vk(r) := (−Δ)ku.

For clarity, we also set v0 = u. Our aim is to prove that vk → 0 at infinity for each
k > 0. In view of Lemma 2.2, there holds vk < 0. Observe that in R2N−1 we have

r2−2N (r2N−2v′k)
′ = Δvk = −(−Δ)k+1u > 0,

which implies that v′k > 0. Therefore, vk has a limit at infinity.
To prove the desired limit, let us start with k = 1. Upon using our convention

and the monotone decreasing of −v1, we clearly have

r2N−2v′0(r) = −
∫ r

0

s2N−2v1(s)ds � − r2N−1

2N − 1
v1(r),

which yields

v0(r) � v0(0)− Cr2v1(r) � v0(0)

for some constant C > 0. Since v0 has linear growth at infinity, we deduce that
v1(r) → 0 as r → +∞. The above argument can be repeatedly used to conclude
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the desired limits. Indeed, suppose that vk−1(r) → 0 as r → +∞; we will show
that vk(r) → 0 as r → +∞. To this purpose, we observe that

r2N−2v′k−1(r) = −
∫ r

0

s2N−2vk(s)ds � − r2N−1

2N − 1
vk(r),

which implies that

vk−1(r) � vk−1(0)− Cr2vk(r) � vk−1(0)

for some constant C > 0 which depends only on N . Dividing both sides by r2, we
obtain

vk−1(r)

r2
� vk−1(0)

r2
+ C1(−vk(r)) �

vk−1(0)

r2
.

We now send r → +∞ to get the desired result. �

Lemma 2.6. Let u > 0 satisfy (1.1) with the linear growth (1.12). Then α > 0
where the constant α is given in (1.12).

Proof. In view of Lemma 2.4, the inequality u′′(r) � 0 implies that u′(r) � u′(1) >
0 for any r � 1. From this we obtain

u(r) � u′(1)(r − 1) + u(1)

for all r � 1. The above inequality tells us that u grows at least linearly at infinity.
Moreover, if the limit lim|x|→+∞ u(x)/|x| = α � 0 exists uniformly, it must hold
that α > 0 thanks to u′(1) > 0. �

3. A classification result: Proof of Theorem 1.1

The main purpose in this section is to provide a proof of Theorem 1.1. First we
set

U(x) = c0

∫
R2N−1

|x− y|u−(4N−1)(y)dy,

with the constant c0 > 0 given by (2.2). Note that by the definition of the constants
ci in (2.1), there holds

cN−k−1Δx(|x− y|2k−2N+3) = −cN−k|x− y|2k−2N+1.

Therefore, an easy calculation shows that

(3.1) (−Δ)kU(x) = −ck

∫
R2N−1

u−(4N−1)(y)

|x− y|2k−1
dy

for k = 1, . . . , N − 1 with the constant ck > 0 given by (2.1) and

(−Δ)NU(x) = −u−(4N−1).

In particular,

(−Δ)kU(x) < 0

everywhere on R2N−1. Recall that the function u solves ΔNu = (−1)N−1u−(4N−1)

in R2N−1. For simplicity, we set

Uk(x) = (−Δ)kU(x).

We now prove the following important properties for Uk.
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Lemma 3.1. For each fixed k ∈ {1, . . . , N − 1}, the function Uk satisfies

Uk(x) → 0

as |x| → +∞.

Proof. It follows from (1.12) that there exists R > 0 such that if |x| > R, then
u(x) > α|x|/2. This implies that∫

R2N−1

|x− y|2ku−(4N−1)(y)dy < +∞

for all k = 1, . . . , N − 1. In particular, we have
∫
R2N−1 u−(4N−1)(y)dy < +∞ is

finite and u−(4N−1)(x) is a bounded function, say by M > 0. By (3.1), we have

Uk(x) = −ck

∫
R2N−1

u−(4N−1)(y)

|x− y|2k−1
dy.

For given ε > 0, there exists some δ > 0 small enough such that∫
|x−y|�δ

u−(4N−1)(y)

|x− y|2k−1
dy � CM

∫ δ

0

s2N−2k−1ds <
ε

2

for any x ∈ R2N−1. In the region {|x − y| � δ}, we can use the dominated
convergence theorem to conclude that

lim
|x|→+∞

∫
|x−y|>δ

u−(4N−1)(y)

|x− y|2k−1
dy = 0.

Therefore, ∫
|x−y|>δ

u−(4N−1)(y)

|x− y|2k−1
dy <

ε

2

for any large x ∈ R2N−1. This shows that Uk(x) has the limit zero at infinity. �

Following the method used in [CX09], to prove our main theorem, we need to
establish an integral representation for Δku for any k ∈ {1, . . . , N − 1}. First, for
ΔN−1u, we prove the following result.

Lemma 3.2. Let u satisfy (1.1) with the linear growth (1.12). Then the represen-
tation

(3.2) (−Δ)N−1u(x) = −cN−1

∫
R2N−1

u−(4N−1)(y)

|x− y|2N−3
dy

holds with the constant cN−1 > 0 given in (2.1).

Proof. Upon using the notation for Uk mentioned at the beginning of this section,
UN−1 is exactly the right hand side of (3.2), that is,

UN−1(x) = −cN−1

∫
R2N−1

u−(4N−1)(y)

|x− y|2N−3
dy.

We also denote an upper bound of u−(4N−1) by M . By Lemma 3.1, we know that
UN−1 is bounded. Note that −cN−1|x − y|−(2N−3) is the Green function of Δ in

R2N−1; therefore an easy calculation shows that

ΔUN−1(x) =

∫
R2N−1

Δx

( −cN−1

|x− y|2N−3

)
u−(4N−1)(y)dy = u−(4N−1)(x).
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Now it follows from the equations satisfied by UN−1 and u that

Δ((−Δ)N−1u− UN−1) = 0

in R2N−1. Since UN−1 is bounded and (−Δ)N−1u is non-positive, we deduce that
(−Δ)N−1u−UN−1 is a harmonic function which is bounded from above. Thus the
Liouville theorem can be applied to conclude that

(3.3) (−Δ)N−1u = UN−1 + bN−1

for some constant bN−1. To get rid of the constant bN−1, we take the spherical
average of both sides of (3.3) to get

vN−1(r) = UN−1(r) + bN−1,

where vN−1 is defined in the proof of Lemma 2.5. Taking the limit as r → +∞ we
deduce that bN−1 = 0, thanks to Lemmas 2.5 and 3.1. �

By repeating the argument used in the proof of Lemma 3.2, we easily obtain the
following result for Δku for each k ∈ {1, . . . , N − 2}.

Lemma 3.3. Let u satisfy (1.1) with the linear growth (1.12). Then for each
k = 1, . . . , N − 1, the representation

(3.4) (−Δ)N−ku(x) = −cN−k

∫
R2N−1

u−(4N−1)(y)

|x− y|2N−1−2k
dy

holds with the constant cN−k > 0 given in (2.1).

Proof. We prove (3.4) by induction on k. Clearly (3.4) holds for k = 1 by Lemma
3.2. Suppose that (3.4) holds for k, that is,

(−Δ)N−ku(x) = −cN−k

∫
R2N−1

u−(4N−1)(y)

|x− y|2N−1−2k
dy.

We prove (3.4) for k + 1, that is,

(−Δ)N−k−1u(x) =− cN−k−1

∫
R2N−1

u−(4N−1)(y)

|x− y|2N−3−2k
dy.

Notice that

UN−k−1(x) =− cN−k−1

∫
R2N−1

u−(4N−1)(y)

|x− y|2N−3−2k
dy.

Clearly, the function UN−k−1 is bounded by means of Lemma 3.1. Hence

ΔUN−k−1(x) = −cN−k−1

∫
R2N−1

u−(4N−1)(y)Δx

( 1

|x− y|2N−3−2k

)
dy.

Note that by the definition of the constants ci in (2.1), there holds

cN−k−1Δx(|x− y|2k−2N+3) = −cN−k|x− y|2k−2N+1.

Therefore,

Δ((−Δ)N−k−1u− UN−k−1) = 0

in R2N−1. Since UN−k−1 is bounded and (−Δ)N−k−1u is non-positive, we deduce
that (−Δ)N−k−1u−UN−k−1 is a harmonic function which is bounded from above.
Thus the Liouville theorem can be applied to conclude that

(3.5) (−Δ)N−k−1u = UN−k−1 + bN−k−1
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for some constant bN−k−1. Taking the spherical average of both sides of (3.5) we
get

vN−k−1(r) = UN−k−1(r) + bN−k−1,

where vN−k−1 is defined in the proof of Lemma 2.5. Taking the limit as r → +∞
we deduce that bN−k−1 = 0, thanks to Lemmas 2.5 and 3.1. This completes the
present proof. �

Using Lemma 3.3, we obtain the following representation of Δu:

(3.6) Δu(x) = c1

∫
R2N−1

u−(4N−1)(y)

|x− y| dy

with the constant c1 given in (2.1). Then using (3.6), we obtain a representation
for u as follows.

Lemma 3.4. There exists a constant γ such that u has the following representation:

(3.7) u(x) = c0

∫
R2N−1

|x− y|u−(4N−1)(y)dy + γ

with the constant c0 given by (2.2).

Proof. Denote by h the function

h(x) = c0

∫
R2N−1

|x− y|u−(4N−1)(y)dy

and let

β = c0

∫
R2N−1

u−(4N−1)(y)dy.

First of all, we have

|∇h|(x) =
∣∣∣c0

∫
R2N−1

x− y

|x− y|u
−(4N−1)(y)dy

∣∣∣ � β.

By observing (2.2), we easily verify that c0Δx(|x− y|) = c1|x− y|−1. From this, it
is immediate to see that Δ(u− h) = 0. It follows from the dominated convergence
theorem that

lim
|x|→+∞

h(x)

|x| = β.

Since both u and h are at most linear growth at infinity, we obtain by the generalized
Liouville theorem that

(3.8) u(x) = h(x) +
2N−1∑
i=1

bixi + γ

for some constants bi and γ. Denote x/|x| and (b1, . . . , b2N−1) by Θ and b, respec-
tively. It follows from (3.8) that

(3.9)
u(x)

|x| =
h(x)

|x| +b ·Θ+
γ

|x| .

Taking the limit as |x| → +∞ on both sides of (3.9) we get α = β and b = 0. This
finishes the proof of the lemma. �

In the last part of the section, we prove that γ = 0.

Lemma 3.5. The constant γ in the representation formula (3.7) is zero.
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Proof. As an immediate consequence of Lemma 3.4, we obtain the representation
for ∇u as follows:

(3.10) ∇u(x) = c0

∫
R2N−1

x− y

|x− y|u
−(4N−1)(y)dy.

From this we obtain

(3.11) x · ∇u(x) = c0

∫
R2N−1

|x|2 − x · y
|x− y| u−(4N−1)(y)dy.

Now multiply (3.11) thoughout by u−(4N−1) and integrate the resulting equation
over the ball centered at the origin with radius R to obtain

− 1

4N − 2

∫
B(0,R)

x · ∇u−(4N−2)(x)dx

= c0

∫
R2N−1

(∫
B(0,R)

|x|2 − x · y
|x− y| u−(4N−1)(x)dx

)
u−(4N−1)(y)dy.

Now for the left hand side of the preceding equation, we integrate by parts to get

− 1

4N − 2

∫
B(0,R)

x · ∇u−(4N−2)(x)dx

=− 1

4N − 2

⎡
⎢⎢⎣
R

∫
∂B(0,R)

u−(4N−2)(x)dσx

− (2N − 1)

∫
B(0,R)

u−(4N−2)(x)dx

⎤
⎥⎥⎦

=
1

2

∫
B(0,R)

u−(4N−2)(x)dx− R

4N − 2

∫
∂B(0,R)

u−(4N−2)(x)dσx.

(3.12)

For the right hand side, we notice that |x|2−x ·y =
(
|x− y|2 + (x− y) · (x+ y)

)
/2,

which leads to

c0

∫
R2N−1

(∫
B(0,R)

|x|2 − x · y
|x− y| u−(4N−1)(x)dx

)
u−(4N−1)(y)dy

=
c0
2

∫
R2N−1

(∫
B(0,R)

|x− y|2 + |x|2 − |y|2
|x− y| u−(4N−1)(x)dx

)
u−(4N−1)(y)dy

=
1

2

∫
B(0,R)

(u(x)− γ)u−(4N−1)(x)dx

+
c0
2

∫
R2N−1

(∫
B(0,R)

|x|2 − |y|2
|x− y| u−(4N−1)(x)dx

)
u−(4N−1)(y)dy.

Here in the last step, we have used the representation formula for u established in
Lemma 3.4. Letting R → +∞, since the integrand in the last term is absolutely
integrable, this term becomes

∫
R2N−1

∫
R2N−1 with the same integrand. Hence, in

the limit, this last term vanishes. Since u has exact linear growth at infinity and
N � 2, the boundary term in (3.12) also vanishes. Hence, one gets

1

2

∫
R2N−1

u−(4N−2)(x)dx =
1

2

∫
R2N−1

u−(4N−2)(x)dx− γ

2

∫
R2N−1

u−(4N−1)(x)dx,

which implies γ = 0. �
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Proof of Theorem 1.1. Now we prove Theorem 1.1. Suppose that u solves (1.1).
Then the representation

u(x) = c0

∫
R2N−1

|x− y|u−(4N−1)(y)dy

for some positive constant c0 is simply a consequence of Lemmas 3.4 and 3.5. From
this representation, we can apply a general classification result due to Li in [Li04],
via the method of moving spheres, to conclude that u takes the form

u(x) = (1 + |x|2)1/2

in R2N−1 up to dilations and translations. �
As can be seen from the above proof, the exact growth condition (1.12) is crucial.

This leads us to raise a question whether or not Theorem 1.1 remains valid if we
replace the exact growth condition (1.12) by a more reasonable growth condition

(3.13) α1(1 + |x|) � u(x) � α2(1 + |x|)
for some positive constants α1 and α2.

We note that in the case N = 2, McKenna and Reichel have already showed that
a radially symmetric solution to (1.1) with linear growth exists. It turns out that
this solution is unique and has exactly linear growth at infinity; see [KR03, Theorem
4.2(a)]; see also [Gue12, Theorem 1.3]. Therefore, Theorem 1.1 in the case N = 2
with the new growth condition (3.13) remains valid in the class of radially symmetric
solutions. However, to the best of our knowledge, there is no similar result in a
larger class of solutions.

Let us recall that in this paper to classify solutions to (1.1) with exact linear
growth, we essentially transform the differential equation to an integral equation.
From this we obtain the classification as shown in Theorem 1.1. In view of McKenna
and Reichel’s result mentioned above, if we wish to replace the growth condition
(1.12) by the growth condition (3.13), then we have to show that any positive C2N -
solution to (1.1) with linear growth (3.13) is radially symmetric. Hence, toward an
answer for the above question, we need to answer the following:

• Does McKenna and Reichel’s result still hold for any N > 2?
• Is any positive C2N -solution to (1.1) with linear growth (3.13) radially
symmetric?

Due to the limit of length, we leave this topic for future research.

4. Non-existence results: Proof of Theorems 1.2 and 1.3

4.1. Proof of Theorem 1.2. We prove the non-existence result in Theorem 1.2 by
way of contradiction. Indeed, suppose that u solves (1.9) with exact linear growth
α > 0 at infinity. By the equation, we note that

(−Δ)Nu > 0

everywhere in R2N−1. Therefore, as in Lemma 2.2, we can apply a general result
from [Ngo17, Theorem 2] to get

(−Δ)ku < 0

everywhere in R2N−1 for each k = 1, . . . , N − 1. In particular Δu < 0, which
implies that

u′(r) < 0
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for any r. Since u has exact linear growth α > 0 at infinity, we deduce that

u(x) � α

2
|x|

for |x| large. Hence

u(r) =

∫
--
∂B(0,r)

u(x)dσx � α

2
r

for large r. This gives us a contradiction since u′ < 0.

4.2. Proof of Theorem 1.3. We prove Theorem 1.3 by contradiction. First, by
contradiction assumption, we recover the super poly-harmonic property for solu-
tions of (1.9) without using the linear growth property as in Lemma 2.2. Indeed,
suppose that u solves (1.9) which satisfies all assumptions in the theorem, that is,

(4.1) u(x) � 1 = u(0)

for all x ∈ R2N−1,

(4.2)

∫
R2N−1

u−(4N−2)dx < +∞,

and

(4.3)

∫
R2N−1

|(−Δ)iu|2dx < +∞

for i = 1, . . . , N − 1. In the sequel, we prove that there exists a sequence of non-
negative functions Uk and a sequence of positive numbers qk > 1 such that

(−Δ)ku = Uk

for all k = 1, . . . , N − 1 and that

Uk ∈ Lq(R2N−1)

for all q > qk. By induction, we first verify the statement for k = N − 1. Set

UN−1(x) = cN−1

∫
R2N−1

u−(4N−1)(y)

|x− y|2N−3
dy,

where cN−1 is given in (2.1). Thanks to (4.1) and (4.2), it is not hard to see that∫
R2N−1

u−q(x)dx < +∞

for all q � 4N −2; hence UN−1 ∈ Lq(R2N−1) for all q > 1 =: qN−1. As in the proof
of Lemma 3.2, there holds

(4.4) Δ((−Δ)N−1u− UN−1) = 0.

On the other hand, for r > 0 and any x ∈ R2N−1, we have∫
B(x,r)

u−(4N−1)dy = −r2N−2 ∂

∂r

(
r−(2N−2)

∫
∂B(x,r)

(−Δ)N−1udσ
)
.(4.5)

After dividing both sides of (4.5) by r2N−2 and integrating the resulting equation
over [0, r], we obtain∫ r

0

s
−(2N−2)
1

(∫
B(x,s1)

u−(4N−1)dy
)
ds1

= −r−(2N−2)

∫
∂B(x,r)

(−Δ)N−1udσ + ω2N−1(−Δ)N−1u(x).

(4.6)
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Multiplying both sides of (4.6) by r2N−2 and integrating the resulting equation
over [0, r] we get

∫ r

0

s2N−2
2

(∫ s2

0

s
−(2N−2)
1

(∫
B(x,s1)

u−(4N−1)dy
)
ds1

)
ds2

=−
∫
B(x,r)

(−Δ)N−1udy +
ω2N−1

2N − 1
(−Δ)N−1u(x)r2N−1

=r2N−2 ∂

∂r

(
r−(2N−2)

∫
∂B(x,r)

(−Δ)N−2udσ
)

+
ω2N−1

2N − 1
(−Δ)N−1u(x)r2N−1.

(4.7)

Repeating the above argument we get

g(r) :=

∫ r

0

s
−(2N−2)
3

(∫ s3

0

s2N−2
2

(∫ s2

0

s
−(2N−2)
1

(∫
B(x,s1)

u−(4N−1)dy
)
ds1

)
ds2

)
ds3

=r−(2N−2)

∫
∂B(x,r)

(−Δ)N−2udσ + ω2N−1(−Δ)N−2u(x)

+
ω2N−1

2(2N − 1)
(−Δ)N−1u(x)r2.

(4.8)

Making use of the L’Hospital rule, we conclude that

lim
r→+∞

g(r)

r2
� C,

for some constant C > 0 independent of x. We go back to (4.8) to conclude that

(−Δ)N−1u is bounded from above in R2N−1. Together with the fact that UN−1 is
positive everywhere, by the Liouville theorem, we obtain from (4.4) that

(−Δ)N−1u− UN−1 = C

everywhere in R2N−1 for some constant C. Since UN−1 ∈ Lq(R2N−1) for any
q > qN−1, we claim that lim|x|→∞ UN−1(x) = 0. This combines with the condition
(4.3) to give C = 0. That is equivalent to

(−Δ)N−1u = UN−1 � 0.

Now, we suppose that

(−Δ)N−ku = UN−k

for some non-negative function UN−k in R2N−1 with UN−k ∈ Lq(R2N−1) for any
q > qk for some positive constant qk. Our next task is to prove that (−Δ)N−k−1u
has a similar property. To this purpose, we repeat the same calculation as above.
Indeed, we set

UN−k−1(x) = cN−1

∫
R2N−1

UN−k(y)

|x− y|2N−3
dy.
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Hence, similar to the way we obtained (4.8), after several steps we arrive at∫ r

0

s
−(2N−2)
3

(∫ s3

0

s2N−2
2

(∫ s2

0

s
−(2N−2)
1

(∫
B(x,s1)

UN−k(y)dy
)
ds1

)
ds2

)
ds3

=r−(2N−2)

∫
∂B(x,r)

(−Δ)N−k−2udσ + ω2N−1(−Δ)N−k−2u(x)

+
ω2N−1

2(2N − 1)
(−Δ)N−k−1u(x)r2.

From this, it is not hard to see that the function (−Δ)N−k−1u is bounded from
above and

ΔUN−k−1(x) = −UN−k(x) = −(−Δ)N−ku(x).

Therefore,
Δ((−Δ)N−k−1u− UN−k−1) = 0.

From the positivity of UN−k−1, we get that (−Δ)N−k−1u−UN−k−1 is also bounded
from above. Therefore, by the Liouville theorem, there exists a constant C such
that

(−Δ)N−k−1u− UN−k−1 = C

everywhere in R2N−1. Meanwhile, since (−Δ)N−ku = UN−k ∈ Lq(R2N−1) for any
q > qk, we can conclude that there exists some qk+1 > qk such that UN−k−1 ∈
Lq(R2N−1) for any q > qk+1. Hence, there holds C = 0, which completes the proof
of the statement.

Let k = N − 1; it follows that −Δu is non-negative. However, we can also check
that

Δ
( 1

u

)
= −Δu

u2
+ 2

|∇u|2
u3

� 0.

It follows that 1/umust be constant, which contradicts (4.2). The proof is complete.
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[GW08] Zongming Guo and Juncheng Wei, Entire solutions and global bifurcations for a bi-
harmonic equation with singular non-linearity in R3, Adv. Differential Equations 13
(2008), no. 7-8, 753–780. MR2479029

[Juh13] Andreas Juhl, Explicit formulas for GJMS-operators and Q-curvatures, Geom. Funct.
Anal. 23 (2013), no. 4, 1278–1370, DOI 10.1007/s00039-013-0232-9. MR3077914

[Gra07] C. Robin Graham, Conformal powers of the Laplacian via stereographic projection,
SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 121, 4, DOI

10.3842/SIGMA.2007.121. MR2366901
[GJMS92] C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling, Confor-

mally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46
(1992), no. 3, 557–565, DOI 10.1112/jlms/s2-46.3.557. MR1190438

[KR03] P. J. McKenna and Wolfgang Reichel, Radial solutions of singular nonlinear bihar-
monic equations and applications to conformal geometry, Electron. J. Differential
Equations (2003), No. 37, 13 pp. MR1971023

[Li04] Yan Yan Li, Remark on some conformally invariant integral equations: the method of
moving spheres, J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153–180. MR2055032

[LWZ16] S. Luo, J. C. Wei, and W. Zou, On the triharmonic Lane–Emden equation, preprint,
2016.

[MW08] Li Ma and J. C. Wei, Properties of positive solutions to an elliptic equation
with negative exponent, J. Funct. Anal. 254 (2008), no. 4, 1058–1087, DOI
10.1016/j.jfa.2007.09.017. MR2381203
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