Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators


Authors: V. Bavula, V. Bekkert and V. Futorny
Journal: Proc. Amer. Math. Soc. 146 (2018), 2373-2380
MSC (2010): Primary 16D60, 16D70, 16P50, 16U20
DOI: https://doi.org/10.1090/proc/13985
Published electronically: January 29, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the algebra $ \mathbb{I}_1= K\langle x, \frac {d}{dx}, \int \rangle $ of polynomial integro-differential operators over a field $ K$ of characteristic zero, a classification of indecomposable, generalized weight $ \mathbb{I}_1$-modules of finite length is given. Each such module is an infinite dimensional uniserial module. Ext-groups are found between indecomposable generalized weight modules; it is proven that they are finite dimensional vector spaces.


References [Enhancements On Off] (What's this?)

  • [1] V. V. Bavula, Finite-dimensionality of $ {\rm Ext}^n$ and $ {\rm Tor}_n$ of simple modules over a class of algebras, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 80-82 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 3, 229-230 (1992). MR 1139880
  • [2] V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), no. 1, 75-97 (Russian); English transl., St. Petersburg Math. J. 4 (1993), no. 1, 71-92. MR 1171955
  • [3] Vladimir Bavula and Viktor Bekkert, Indecomposable representations of generalized Weyl algebras, Comm. Algebra 28 (2000), no. 11, 5067-5100. MR 1785490
  • [4] V. V. Bavula, The algebra of integro-differential operators on a polynomial algebra, J. Lond. Math. Soc. (2) 83 (2011), no. 2, 517-543. MR 2776649
  • [5] V. V. Bavula, The group of automorphisms of the algebra of polynomial integro-differential operators, J. Algebra 348 (2011), 233-263. MR 2852239
  • [6] V. V. Bavula, The algebra of integro-differential operators on an affine line and its modules, J. Pure Appl. Algebra 217 (2013), no. 3, 495-529. MR 2974228
  • [7] V. V. Bavula, The algebra of polynomial integro-differential operators is a holonomic bimodule over the subalgebra of polynomial differential operators, Algebr. Represent. Theory 17 (2014), no. 1, 275-288. MR 3160724
  • [8] V. V. Bavula and T. Lu, The quantum Euclidean algebra and its prime spectrum, Israel J. Math. 219 (2017), no. 2, 929-958. MR 3649612
  • [9] V. V. Bavula, The global dimension of the algebras of polynomial integro-differential operators $ \mathbb{I}_n$ and the Jacobian algebras $ \mathbb{A}_n$, arXiv:1705.05227.
  • [10] Viktor Bekkert, Georgia Benkart, and Vyacheslav Futorny, Weight modules for Weyl algebras, Kac-Moody Lie algebras and related topics, Contemp. Math., vol. 343, Amer. Math. Soc., Providence, RI, 2004, pp. 17-42. MR 2056678
  • [11] Richard E. Block, The irreducible representations of the Lie algebra $ {\mathfrak{s}}{\mathfrak{l}}(2)$ and of the Weyl algebra, Adv. in Math. 39 (1981), no. 1, 69-110. MR 605353
  • [12] Vyacheslav Futorny, Dimitar Grantcharov, and Volodymyr Mazorchuk, Weight modules over infinite dimensional Weyl algebras, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3049-3057. MR 3223361
  • [13] Vyacheslav Futorny and Uma N. Iyer, Representations of $ D_q({\Bbbk}[x])$, Israel J. Math. 212 (2016), no. 1, 473-506. MR 3504334
  • [14] Li Guo, Georg Regensburger, and Markus Rosenkranz, On integro-differential algebras, J. Pure Appl. Algebra 218 (2014), no. 3, 456-473. MR 3124211
  • [15] Jonas T. Hartwig, Locally finite simple weight modules over twisted generalized Weyl algebras, J. Algebra 303 (2006), no. 1, 42-76. MR 2253653
  • [16] Jonas T. Hartwig, Pseudo-unitarizable weight modules over generalized Weyl algebras, J. Pure Appl. Algebra 215 (2011), no. 10, 2352-2377. MR 2793941
  • [17] Volodymyr Mazorchuk and Lyudmyla Turowska, Simple weight modules over twisted generalized Weyl algebras, Comm. Algebra 27 (1999), no. 6, 2613-2625. MR 1687329
  • [18] Rencai Lü, Volodymyr Mazorchuk, and Kaiming Zhao, Simple weight modules over weak generalized Weyl algebras, J. Pure Appl. Algebra 219 (2015), no. 8, 3427-3444. MR 3320227
  • [19] J. C. McConnell and J. C. Robson, Homomorphisms and extensions of modules over certain differential polynomial rings, J. Algebra 26 (1973), 319-342. MR 0342566
  • [20] Ian Shipman, Generalized Weyl algebras: category $ \mathcal{O}$ and graded Morita equivalence, J. Algebra 323 (2010), no. 9, 2449-2468. MR 2602389

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16D60, 16D70, 16P50, 16U20

Retrieve articles in all journals with MSC (2010): 16D60, 16D70, 16P50, 16U20


Additional Information

V. Bavula
Affiliation: Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom
Email: v.bavula@sheffield.ac.uk

V. Bekkert
Affiliation: Departamento de Matemática, ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CP 702, CEP 30123-970, Belo Horizonte-MG, Brasil
Email: bekkert@mat.ufmg.br

V. Futorny
Affiliation: Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo, CEP 05315-970, Brasil
Email: futorny@ime.usp.br

DOI: https://doi.org/10.1090/proc/13985
Keywords: The algebra of polynomial integro-differential operators, generalized weight module, indecomposable module, simple module.
Received by editor(s): January 28, 2017
Received by editor(s) in revised form: August 27, 2017
Published electronically: January 29, 2018
Communicated by: Kailash Misra
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society