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Abstract. Many authors have studied the rate of average decay of the Fourier
transform of measures because of its relationship with the Falconer’s conjec-
ture. Although examples have been given showing that the spherical average
of the Fourier transform cannot decay always too fast, they usually do not
exhibit a single measure decaying sufficiently slow on the whole space. We
recover known results using instead single measures.

1. Introduction

A classical theorem of Steinhaus [19] states that if E ⊂ R
n is a set of positive

Lebesgue measure, then for every sufficiently small δ > 0 there exist x, y ∈ E such
that |x− y| = δ. If we define the distance set of E as the collection of all distances
between points in E, i.e.,

Δ(E) := {|x− y| | x, y ∈ E},
then the Steinhaus theorem says that [0, ε) ⊂ Δ(E) for some sufficiently small ε > 0.

In [6] Falconer investigated in more detail the size of the distance set of more
general sets E ⊂ R

n, not necessarily of positive Lebesgue measure. He showed
that there are Cantor-like sets of Hausdorff dimension less than n/2 (n ≥ 2) whose
distance set has Lebesgue measure zero. Hence, he was led to conjecture that if a set
E ⊂ R

n (n ≥ 2) has dimension strictly greater than n/2, then the Lebesgue measure
of Δ(E) is positive. The conjecture remains undecided in every dimension, though
Orponen in [16] proved it for self-similar fractals in the plane, up to an additional
condition. If n = 1, then there exist one-dimensional sets such that Δ(E) has
Lebesgue measure zero.

Mattila devised a method to estimate the size of Δ(E) that depends on the
average rate of decay of the Fourier transform of a measure μ supported in E, or
more precisely depends on

σ(μ)(r) :=

∫
Sn−1

|μ̂(rω)|2 dσ(ω),
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where σ is the standard measure on the sphere. For more details see [13, 15] and
the references therein. Related to the Hausdorff dimension is the s-energy of a set,

Is(μ) :=

∫∫
|x− y|−s dμ(x)dμ(y),

where μ is a measure supported in the set; see [14, chp. 8]. The success of Mattila’s
approach lies in obtaining the best possible rate of decay of measures with finite
s-energy, hence we define

α(s) := sup{α | σ(μ)(r) ≤ Cr−α for r > 0, suppμ ⊂ B(0, 1) and Is(μ) < ∞}.

It is not very hard to prove that α(s) ≤ s for 0 < s < n and that α(s) = s for
0 < s ≤ (n− 1)/2; see [15].

The value of α(s) for R2 was investigated by Bourgain in [1] using the theory of
restriction of the Fourier transform to the sphere, and the sharp value was finally
settled by Wolff [20], asserting that

α(s) =

⎧⎪⎨
⎪⎩
s for 0 < s < 1

2 ,
1
2 for 1

2 ≤ s < 1,
s
2 for 1 ≤ s < 2.

The proof of Wolff was simplified and generalized by Erdog̃an [4, 5], improving
the lower bound of α(s) in higher dimensions. Lucà and Rogers in [12] pushed even
further the lower bound. Examples of Sjölin [17] show that α(s) ≤ s/2+n/2−1 for
1 ≤ n−2 ≤ s < n, and this bound was not improved for several years until the work
of Iosevich and Rudnev [9]. They show how to construct a sequence of measures
dμk = ρk dx, where ρk is a smooth positive function, such that Is(μk) = 1 and

σ(μk)(rk) ≥ Cr
−n−2

n s−1

k for a sequence rk → ∞; hence α(s) ≤ n−2
n s+ 1. Essential

to their argument is the count of lattice points intersecting spheres of large radius.
Other proof using the same essential idea, but arguing by a duality principle, is due
to Lucà and Rogers [12].

Moreover, the work of Iosevich and Rudnev [10] on signed measures suggests the
possibility of getting the bound

α(s) ≤

⎧⎪⎨
⎪⎩
s for 0 < s < n−1

2 ,
n−1
2 for n−1

2 ≤ s < n
2 ,

n−1
n s for n

2 ≤ s < n;

however, problems concerning coherence patterns prevented us from upgrading this
bound to positive measures. Further results and generalizations can be found in
[2, 3, 7, 8, 11, 18].

In this note we show that it is not necessary to use a sequence of measures to
prove the theorem of Iosevich and Rudnev [9], namely α(s) ≤ n−2

n s+1, but a single
one does.

Theorem 1.1. If n/2 < s < n, then there exists a measure μ with finite t-energy

for t < s, such that σ(μ)(rk) ≥ Cr
−n−2

n s−1

k for a sequence rk → ∞.

Frostman’s lemma allows us to construct measures of finite t-energy on a set of
dimension s > t. Hence, we will prove first that the Fourier transform of measures
supported in some Cantor-like sets, just the same sets used by Falconer to state his



MEASURES WITH SLOW DECAY OF THE FOURIER TRANSFORM 2619

conjecture, concentrates in balls around lattice points, so that the theorem will be
a consequence of counting lattice points on spheres of large radius.

Let q1, q2, . . . be a sequence of integers increasing rapidly, say qk+1 > qkk , and
define the sets Es =

⋂∞
k=1 Es,k ⊂ R for 0 < s < 1, where

Es,k := {x ∈ [0, 1] | |x− p

qk
| ≤ q

−1/s
k for some p ∈ Z+}.

It is known that dim(Es) = s; see for example [6]. Taking cartesian product, we get
sets E = Es1 ×· · ·×Esn ⊂ R

n of dimension ≥ s = s1+ · · ·+sn < n. For simplicity,
we assume that si = s/n and that the sequence {qk} is the same for each axis, in
which case dim(E) = s.

Let μ be a probability measure supported in E = Es/n×· · ·×Es/n; then we have

for the Fourier transform |μ̂(ξ)| ≥ |
∫
cos(2π〈ξ, x〉) dμ(x)|. Since E ⊂ Es/n,k ×· · ·×

Es/n,k, only the points with coordinates xi = pi/qk + ai for |ai| ≤ q
−n/s
k contribute

to the integral. Hence for the frequencies ξ = (N1qk, . . . , Nnqk), where Ni are

integers satisfying 1 ≤ Ni ≤ cq
n/s−1
k , we get cos(2π〈ξ, x〉) = cos(2πqk

∑
Niai), but

|2πqk
∑

Niai| ≤ 2πnc, so choosing c sufficiently small we get

|μ̂(ξ)| ≥
∫

cos(2π〈ξ, x〉) dμ(x) ≥ 1

2
μ(Rn) =

1

2
.

This is basically what we need to know about the Fourier transform of measures
supported in our sets.

2. Proof of Theorem 1.1

Assume that E is as before and that μ is a Frostman measure such that μ(Rn) =

1, hence |μ̂(ξ)| ≥ 1
2 if ξ ∈ qkZ

n ∩ [0, cq
n/s
k ]n. Since μ is supported in a bounded

set, by the uncertainty principle we can assume that |μ̂(ξ)| ≥ 1
4 in ξ ∈ qkZ

n ∩
[0, cq

n/s
k ]n + B(0, ρ), where B(0, ρ) is a ball of sufficiently small radius ρ ∼ 1. In

other words, μ̂ concentrates around balls in the lattice qkZ
n ∩ [0, cq

n/s
k ]n.

We use now a pigeonholing argument to count lattice points on spheres of certain
large radius rk, although number theoretic reasonings are also possible. The number

of lattice points ξ ∈ qkZ
n lying in the annulus 1

10cq
n/s
k ≤ |ξ| ≤ cq

n/s
k is ∼ q

n(n/s−1)
k .

On the other hand, for a lattice point in the annulus we have |ξ|2 = q2k(N
2
1 + · · ·+

N2
n) ∈ q2kZ ∩ [ c2

100q
2n/s
k , c2q

2n/s
k ], hence the number of distinct distances from the

origin to the lattice points is � q
2(n/s−1)
k . Since the points are distribuited among

the different distances, then we can find a sphere Sk centered at the origin and of

radius rk ∼ q
n/s
k such that the number of lattice points on it is � q

(n−2)(n/s−1)
k ∼

r
(n−2)(1−s/n)
k . In terms of spherical means, we have

σ(μ)(rk) ≥
1

16rn−1
k

∫
Sk∩(qkZn+B(0,ρ))

dσ � ρn−1r
(n−2)(1−s/n)−(n−1)
k ,

where σ is the standard measure on Sk. We conclude thus that σ(μ)(rk) � r
−n−2

n s−1

k

for a sequence rk → ∞, which is what we wanted to prove.

Remark 2.1. These arguments can be extended to the case of non-euclidean dis-
tances, as done by Iosevich and Rudnev [9].

It is surprising that the sets used by Falconer to state his conjecture do not
match the best known upper bound for two and three dimensions.
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If s ≤ n/2, then the fact that |μ̂(ξ)| ≥ 1
4 in balls around lattice points worsen

the average decay to σ(μ)(rk) � r−s
k for a sequence rk → ∞ because a ball can

intersect many distances.

We can modify the construction of the set E in dimensions two or three to get
a measure whose Fourier transform decays slower. In the case R

3, for example,
we construct first a set E′ = Es′/2 × Es′/2, for 0 < s′ < 2, in the plane spanned
by the first two coordinates; as above we have chosen a sequence {qk} increasing
rapidly to define Es′/2. Now we construct a set E′′ = Es′′ ⊂ R for s′′ = 1− ε, using

instead the sequence lk = �q4s
′′/s′

k 
 to define Es′′ . The dimension of E = E′ × E′′

is ≥ s = s′+s′′ and, by similar calculations as we did before, the Fourier transform
of a measure supported in E satisfies |μ̂(ξ)| ≥ 1

4 for

ξ = (ξ1, ξ2, ξ3) ∈ (qkZ
2 ∩ [0, c1/2q

2/s′

k ]2)× (lkZ ∩ [0, cl
1/s′′

k ]) +B(0, ρ),

where c > 0 is a small constant. Let Sk be a sphere of radius1 rk = cl
1/s′′

k and notice

that rk = cq
4/s′

k . We see then that |μ̂| concentrates on a slab [0, r
1/2
k ]2 × {rk} of

width ρ ∼ 1. The shape of μ̂ may remind the reader of the classical Knapp example,

hence we can think of Sk as being essentially flat at scale r
1/2
k and then the main

contribution of |μ̂| to the spherical mean lies in a cap of radius r
1/2
k , consisting

of all the balls (qkZ
2 ∩ [0, c1/2q

2/s′

k ]2) × {rk} + B(0, ρ). By direct computation we

get that σ(μ)(rk) � r
− s+ε

2 − 1
2

k . Since ε can be made arbitrarily small, we conclude
that α(s) ≤ s

2 + 1
2 for 1 < s < 3, which coincides with the known bound. This is

basically the Knapp example in disguise.
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Colombia

Email address: feponcev@unal.edu.co

http://www.ams.org/mathscinet-getitem?mr=933500
http://www.ams.org/mathscinet-getitem?mr=2044636
http://www.ams.org/mathscinet-getitem?mr=2929609
http://www.ams.org/mathscinet-getitem?mr=1260895
http://www.ams.org/mathscinet-getitem?mr=2006210
http://www.ams.org/mathscinet-getitem?mr=1692851

	1. Introduction
	2. Proof of Theorem 1.1
	References

