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NECKPINCH SINGULARITIES IN FRACTIONAL

MEAN CURVATURE FLOWS

ELEONORA CINTI, CARLO SINESTRARI, AND ENRICO VALDINOCI

(Communicated by Lei Ni)

Abstract. In this paper we consider the evolution of boundaries of sets by
a fractional mean curvature flow. We show that for any dimension n � 2,
there exist embedded hypersurfaces in R

n which develop a singularity without
shrinking to a point. Such examples are well known for the classical mean cur-

vature flow for n � 3. Interestingly, when n = 2, our result provides instead a
counterexample in the nonlocal framework to the well-known Grayson’s The-
orem, which states that any smooth embedded curve in the plane evolving by
(classical) MCF shrinks to a point. The essential step in our construction is
an estimate which ensures that a suitably small perturbation of a thin strip
has positive fractional curvature at every boundary point.

1. Introduction

This paper is concerned with the study of a nonlocal mean curvature flow. More
precisely, we want to study the evolution Et, for time t > 0 of an initial set E0,
such that the velocity of a point x ∈ ∂Et in the outer normal direction ν is given
by the quantity −Hs

E , where Hs
E denotes the fractional mean curvature of E; that

is, for any x ∈ ∂Et we have

(1) ∂tx · ν = −Hs
Et
.

For a real parameter s ∈ (0, 1), we recall that the fractional mean curvature of
a set E at a point x ∈ ∂E is defined as

(2) Hs
E(x) :=

∫
Rn

χCE(y)− χE(y)

|x− y|n+s
dy,

where χA denotes the characteristic function of the set A, CA denotes the com-
plement of A, and the integral above has to be understood in the principal value
sense.

This evolution is the natural analogue in the nonlocal setting of the classical
mean curvature flow, which has been widely studied in the last decades; see e.g.
[14, 22]. While the classical mean curvature flow is the L2-gradient flow of the
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usual perimeter functional, it can be proved that (1) is the L2-gradient flow of
the fractional perimeter, which was first introduced in [5] on the basis of motiva-
tions coming from interfaces in physical models and probabilistic processes. In the
same paper, suitable density estimates, a monotonicity formula, and some regu-
larity results for minimizers were established. The question of the regularity for
minimizers of the fractional perimeter was also addressed in several recent works;
see [3,7,12,24]. Further motivations for the study of (1) come from dislocation dy-
namics and phase-field theory for fractional reaction-diffusion equations; see [21].

The classical mean curvature flow is a quasilinear parabolic problem, and a local
existence result holds for smooth solutions starting from any compact regular initial
surface; see [16,22]. As time evolves, solutions typically develop singularities due to
curvature blowup. Several notions of generalized solutions have been introduced to
study the flow after the onset of singularities. Particularly relevant for our purposes
are the definitions by Chen, Giga, Goto [11] and by Evans and Spruck [15], based
on the level set approach and the notion of viscosity solutions.

For the fractional mean curvature flow, local smooth solutions are also expected
to exist, but no proof of this property is available yet. There are existence and
uniqueness results for viscosity solutions, first obtained by Imbert [21], and later
extended to more general nonlocal flows by Chambolle, Morini, Ponsiglione in [8,9]
and by Chambolle, Novaga, Ruffini in [10].

The formation of singularities has been widely studied in the case of the clas-
sical mean curvature flow. A pioneering result in this framework was obtained by
Huisken [19], who showed that a closed convex surface in R

n, with n > 2, remains
convex along the evolution and shrinks to a point in finite time. If convexity is
dropped, then other kinds of singular behaviour may occur. A standard example
is the so-called neckpinch. The idea is to consider a surface which looks like two
large balls connected by a very thin cylindrical neck, so that, in dimension n > 2,
the mean curvature in the neck is much larger than the one in the balls; hence the
radius of the neck goes to zero faster than the radius of the balls. The existence
of this type of surface was first proved by Grayson [17] and later considered with a
simplified proof by Ecker [14]; see also Angenent [2]. A similar construction for a
flow driven by a different curvature function was done in [1].

When n = 2, a result analogous to [19] for convex curves was proved by Gage and
Hamilton [16]. However, a stronger result holds in this dimension in the classical
case. In fact, Grayson [18] showed that any smooth closed embedded curve in the
plane becomes convex in finite time under the flow and therefore, by [16], shrinks
smoothly to a point. Thus, all other kinds of singularities are ruled out for embedded
curves.

In this paper we construct examples of neckpinch singularities for the fractional
mean curvature flow. More precisely, we obtain the following result:

Theorem 1. Let n � 2. There exists an embedded hypersurface M0 in R
n such

that the viscosity solution of the fractional mean curvature flow (1) starting from
M0 does not shrink to a point.

We point out that, in contrast to the classical case, our construction can be made
in any dimension, in particular for n = 2, showing that Grayson’s theorem fails in
the nonlocal case. It also shows that the distance comparison property for curves
for the classical flow proved by Huisken [20] no longer holds in the nonlocal case.
The heuristic reason for this is that, thanks to its nonlocality, the fractional mean
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curvature of a very thin neck is strictly positive also in dimension 2. Indeed if we
“sit” on the boundary of the neck we see much more complement of E than E itself.
Our result has some analogies with the one of [4], where Delaunay-type periodic
curves in the plane with constant fractional mean curvature are constructed, while
in the classical case such objects exist only in dimension n � 3.

Our results deal with the viscosity solution of (1) because we lack a local ex-
istence result for smooth solutions. However, Theorem 1 also implies that if the
hypersurface we construct has a local smooth evolution, then it develops singulari-
ties before shrinking to a point.

A crucial step in the proof of Theorem 1 is provided by the following result,
of independent interest: if a set E is contained in a strip and its boundary ∂E
has sufficiently small classical curvatures, then the fractional mean curvature of
E is positive everywhere. In particular, a thin set can have all negative classical
principal curvatures at some point but positive fractional mean curvature.

We conclude by recalling other recent contributions in the study of the frac-
tional (and more general nonlocal) mean curvature flows. In [6], the convergence
of a class of threshold dynamics approximations to moving fronts was established.
In particular, threshold dynamics associated to fractional powers of the Laplacian
of order s ∈ (0, 2) were considered. Interestingly, when s ∈ [1, 2) the resulting
interface moves by a (weighted) mean curvature flow while when s ∈ (0, 1) it moves
by a fractional mean curvature flow. In [10], the results contained in [6] have been
extended to the anisotropic case, and it was proved that convexity is preserved as
in the classical case. Finally, in [23] smooth solutions to the fractional mean curva-
ture flow were studied and the evolution equations for several geometric local and
nonlocal quantities were computed. The particular cases of entire graphs and star-
shaped surfaces were considered, obtaining striking analogies with the properties
of the classical case.

The paper is organized as follows:

• In Section 2 we describe the level set approach in the study of nonlocal
mean curvature flows, and we recall the notion of viscosity solutions and
the statement of the comparison principle.

• In Section 3 we establish the estimates on the nonlocal mean curvature of
thin sets, which will be used in the proof of our main result.

• In Section 4, we prove our main result, Theorem 1.

2. Viscosity solutions and comparison principles

via the level set approach

In this section we recall the notion of viscosity solutions for the fractional mean
curvature flow, which is based on the level set approach. The idea is the following:
given an initial surfaceM0 = ∂E0, we choose any continuous function u0 : Rn → R

n

such that

(3) M0 = {x ∈ R
n : u0(x) = 0}.

The geometric equation satisfied by the evolution Mt of M0 can then be translated
into an equation satisfied by a function u(x, t), where u(x, 0) = u0(x) and at each
time

(4) Mt = {x ∈ R
n : u(·, t) = 0}.
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More precisely, the level set equation satisfied by u is

(5) ∂tu+Hs[x, u(·, t)]|Du(x, t)| = 0 in R
n × (0,+∞),

where u satisfies the initial condition

u(x, t) = u0(x) in R
n.

Here and in the following we denote by Hs[x, u(·, t)] the fractional mean curvature
of the superlevel set of u(·, t) at the point x, i.e.,

Hs[x, u(·, t)] = Hs
{y∈Rn :u(y,t)>u(x,t)}(x).

Of course the definition of Mt is well posed if one shows that equation (5) has
a unique solution and definition (3) does not depend on the initial choice of the
function u0. These basic properties were established in [15] for the classical mean
curvature flow and in [21] for the fractional one.

Since the nonlocal case is not so standard and for the sake of completeness, we
recall below all the rigorous definitions and the basic results in [21] (see also [9]).
Let M = {x ∈ R

n : u(x) = 0} = ∂{x ∈ R
n : u(x) > 0}. If u ∈ C1,1 and Du �= 0,

we can define the following quantities:

k∗[x,M] = k∗[x, u] =

∫
Rn

χ{u(x+z)�u(x)}(z)− χ{u(x+z)<u(x)}(z)

|z|n+s
dz,

k∗[x,M] = k∗[x, u] =

∫
Rn

χ{u(x+z)>u(x)}(z)− χ{u(x+z)�u(x)}(z)

|z|n+s
dz.

(6)

It is easy to see that if u ∈ C1,1 and its gradient Du does not vanish on {z ∈ R
n :

u(z) = u(x)}, then k∗ are finite and

k∗[x, u] = k∗[x, u] = −Hs[x, u].

We can now give the definition of viscosity solution for (5) (see [21], Sec. 3).

Definition 2.

(i) An upper semicontinuous function u : [0, T ]× R
n is a viscosity subsolution

of (5) if for every smooth test function φ such that u − φ admits a global
zero maximum at (t, x), we have

(7) ∂tφ � k∗[x, φ(·, t)]|Dφ|(x, t)
if Dφ(x, t) �= 0, and ∂tφ(x, t) � 0 if not.

(ii) A lower semicontinuous function u : [0, T ]× R
n is a viscosity supersolution

of (5) if for every smooth test function φ such that u − φ admits a global
zero minimum at (t, x), we have

(8) ∂tφ � k∗[x, φ(·, t)]|Dφ|(x, t)
if Dφ(x, t) �= 0, and ∂tφ(x, t) � 0 if not.

(iii) A locally bounded function u is a viscosity solution of (5) if its upper semi-
continuous envelope is a subsolution and its lower semicontinuous envelope
is a supersolution of (5).

Remark 3. It is easy to verify that any classical subsolution (respectively superso-
lution) is in particular a viscosity subsolution (respectively supersolution).

We can now state the comparison principles that we will use later in Section 4.
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Proposition 4 (Theorem 2 in [21]). Suppose that the initial datum u0 is a bounded
and Lipschitz continuous function. Let u (respectively v) be a bounded viscosity
subsolution (respectively supersolution) of (5).

If u(x, 0) � u0(x) � v(x, 0), then u � v on R
n × (0,+∞).

In Theorem 3 of [21] existence and uniqueness of viscosity solutions of (5) were
proven. The proof of existence uses Perron’s method, while uniqueness relies on
the comparison principle stated in Proposition 4. Finally in [21, Theorem 6], the
consistency of definition (4) is established, showing that if u and v are two viscosity
solutions of (5) with two different initial data u0 and v0 which have the same zero-
level set, then for every time t > 0 also u(·, t) and v(·, t) have the same zero-level
set.

The uniqueness and the consistency results allow us to define the fractional mean
curvature flow for Mt by using the solution u(·, t) of (5).

3. The nonlocal curvature of thin sets

The goal of this section is to give estimates on the nonlocal curvature of sets with
small classical curvatures which are contained in a strip. The property is rather
general, but we focus on a particular case for the sake of concreteness:

Proposition 5. Let κ > 0. Let E−, E+ ⊂ R
n be connected sets. Assume that E+∩

E− = ∅ and that

E− ⊇ {xn � −1} and E+ ⊇ {xn � 1}.

Suppose also that the boundaries of E− and E+ are of class C2, with classical
directional curvatures bounded in absolute value by κ.

Let E := R
n \ (E− ∪ E+). Then, there exist c0 and κ0 > 0, depending on n, s,

and the C2 bounds on ∂E− and ∂E+, such that for any x ∈ ∂E,

Hs
E(x) � c0,

provided that κ ∈ [0, κ0].

Proof. As a first step, we show that if κ0 is small enough, then the normal vector
at each boundary point of E+ and E− is close to being vertical and therefore the
boundary can be represented as a global graph on R

n−1.
To see this, let us denote by en the unit vector in the xn direction. For any x ∈

∂E−, we denote by ν(x) the outer normal to E− at x and by eTn (x) = en−〈ν, en〉en
the tangential component of en at x. Let us fix an arbitrary x̄ ∈ ∂E− where the
normal is far enough from being vertical, say

(9) |〈ν(x̄), en〉| �
1

2
.

We then consider the curve γ(s) on ∂E− which solves the o.d.e.

γ′ =
eTn (γ)

|eTn (γ)|
, γ(0) = x̄.

The curve γ has unit speed and is defined as long as eTn (γ) �= 0. We can now estimate
the maximal rate of change of the vertical component of ν along γ. Let us denote by
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αx(u, v) the second fundamental form at a point x ∈ ∂E− evaluated at two tangent
vectors u, v. Our assumption on the curvature implies that |αx(u, v)| � κ|u||v|.
Since

d

ds
〈ν(γ(s)), en〉 = αγ(s)(γ

′(s), eTn ),

we obtain ∣∣∣∣ dds 〈ν(γ(s)), en〉
∣∣∣∣ � κ|γ′(s)||eTn | = κ

√
1− 〈ν(γ(s)), en〉2,

that is,

−κ � d

ds
arcsin〈ν(γ(s)), en〉 � κ.

Observe that γ is well defined as long as eTn �= 0, that is, | arcsin〈ν, en〉| < π/2.
Taking into account (9), we obtain

| arcsin〈ν(γ(s)), en〉| �
π

6
+ κs

for all s where γ is defined. Therefore γ(s) is defined at least for s ∈ [0, π/(6κ)]
and satisfies

|〈ν(γ(s)), en〉| � sin
π

3
=

√
3

2
, s ∈

[
0,

π

6κ

]
.

Let us denote by γn the n-th component of γ. We can estimate

γ′
n(s) = 〈γ′(s), en〉 = |eTn (γ(s))| =

√
1− 〈ν(γ(s)), en〉2 � 1

2
, s ∈

[
0,

π

6κ

]
,

which implies that

γn

( π

6κ

)
− γn(0) �

π

12κ
.

Since γ(s) ∈ ∂E− is confined in the strip with |xn| � 1, the right hand side cannot
be larger than 2. This gives a contradiction if κ < π/24, showing that (9) cannot
be satisfied. By the arbitrariness of x̄, we obtain that |〈ν(x̄), en〉| > 1/2 at any
boundary point of ∂E−. In particular, ∂E− cannot have a point where the tangent
plane is vertical. The assumptions on E− then easily imply that ∂E− can be written
as the graph of a C2 function on f− : Rn−1 → R. The property |〈ν, en〉| > 1/2
gives a bound on the Lipschitz constant of f−. Writing the curvatures of ∂E−
in terms of the derivatives of f−, it is easy to find that ||D2f−||∞ � Cκ for some
constant C = C(n). In a similar way, we obtain that ∂E+ is the graph of a function
f+ : Rn−1 → R with analogous properties such that −1 � f−(x

′) < f+(x
′) � 1 for

all x′ ∈ R
n.

After establishing these properties, we can prove our statement by contradiction.
If the desired result were false, there would exist a sequence of pairs of functions

f
(j)
± : Rn−1 → R such that

(10) −1 � f
(j)
− (x′) < f

(j)
+ (x′) � 1 for all x′ ∈ R

n,

(11) ||Df
(j)
± ||∞ � C, ||D2f

(j)
± ||∞ → 0 as j → ∞,

and such that if E(j) = {x = (x′, xn) ∈ R
n : f

(j)
− (x′) � xn � f

(j)
+ (x′)}, then there

exists x(j) ∈ ∂E(j) with

(12) lim
j→+∞

Hs
E(j)(x

(j)) � 0.
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Since these properties are invariant with respect to translation in the first (n− 1)
components, we can further assume that the point x(j) lies over the origin in R

n−1;

that is, it has the form x(j) := (0, . . . , 0, x
(j)
n ). Since |x(j)

n | � 1, up to a subsequence,
we suppose that x(j) → x̄ = (0, . . . , 0, x̄n) as j → +∞ for a suitable x̄n ∈ [−1, 1].

The estimates in (10), (11) show that both sequences f
(j)
− , f

(j)
+ are bounded in

C2 and their second derivatives tend uniformly to zero. Then, up to a subsequence,
they converge in C2

loc(R
n−1) to some limit functions f̄− � f̄+. Let us set Ē = {x =

(x′, xn) ∈ R
n : f̄−(x

′) � xn � f̄+(x
′)}. Then we have x̄ ∈ ∂Ē and, by known

results about the continuity of the fractional curvature with respect to smooth
convergence (see e.g. Theorem 1.1 in [13]), we have that

lim
j→+∞

Hs
E(j)(x

(j)) = Hs
Ē(x̄).

Comparing with (12), we thus conclude that

(13) Hs
Ē(x̄) � 0.

On the other hand, by (10) and (11), we see that the limit functions f± are bounded
and linear, since their second derivatives vanish identically. Hence, they are con-
stant, and we obtain that Ē is a slab of the form {xn ∈ (a, b)} with −1 � a � b � 1.
However, it is well known, and it follows easily from the definition of nonlocal cur-
vature, that such a slab satisfies Hs

Ē
> 0 at all boundary points, in contradiction

to (13). �
Corollary 6. Let ε, δ > 0 and

E :=

{
x = (x′, xn) ∈ R

n s.t. |xn| < ε+
1

π
arctan

(
δ |x′|2

)}
.

Then, if ε and δ are sufficiently small, we have that

inf
x∈∂E

Hs
E(x) � c0 > 0,

for some c0 depending only on s and n.

Proof. We define

E− :=

{
x = (x′, xn) ∈ R

n s.t. xn � −ε− 1

π
arctan

(
δ |x′|2

)}

and E+ :=

{
x = (x′, xn) ∈ R

n s.t. xn � ε+
1

π
arctan

(
δ |x′|2

)}
.

Notice that the boundaries of E± are contained in the strip |xn| � 1 for ε � 1/2,
and the curvatures are of size O(δ2). Thus, we are in the position of exploiting
Proposition 5, from which we obtain the desired result. �

4. Neckpinch

In this section we prove Theorem 1. More precisely, we provide an example of
a surface evolving by fractional mean curvature flow, which develops a singularity
before it can shrink to a point. To this purpose, we recall a property proved in [23].

Lemma 7 (Lemma 2 and Corollary 3 in [23]). Given s ∈ (0, 1) and an integer
n � 2, there exists ω̄ = ω̄(s, n) > 0 such that the fractional mean curvature of a
ball of radius R in R

n is given by

Hs
BR

(x) = ω̄R−s
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for any x ∈ ∂BR(0). Moreover, if we set R(t) := (Rs+1
0 − (ω̄(1 + s))t)

1
s+1 , then

BR(t) is a solution to the fractional mean curvature flow starting from BR0
, and it

collapses to a point in the finite time

(14) TBR0
=

Rs+1
0

ω̄(s+ 1)
.

Observe that while for the classical mean curvature flow, the extinction time of
a sphere of radius R0 is proportional to R2

0, in the fractional case it is proportional
to Rs+1

0 .
We can now give the proof of our main result.

Proof of Theorem 1. We consider now the set Eε defined in Corollary 6:

Eε :=

{
x = (x′, xn) ∈ R

n s.t. |xn| < ε+
2

π
arctan

(
δ |x′|2

)}
.

We know that there exist ε and δ positive such that, for any 0 < ε � ε and 0 < δ � δ,

(15) inf
x∈∂Eε

Hs
Eε
(x) � c0 > 0,

for some c0 depending only on n and s.
Now let κ and ε0 be two positive parameters satisfying

(16) κ < c0 and ε0 < min

{
ε̄,
1

4
κTB1

}
,

where TB1
is the extinction time of the ball of radius 1 given in (14).

The idea is to consider the set Eε0 and to make it evolve with constant velocity
κ in the inner vertical direction. More precisely, we set

ε(t) := ε0 − κ t,

and, for any t, we consider the set

(17) Eε(t) :=

{
x = (x′, xn) ∈ R

n s.t. |xn| < ε(t) +
2

π
arctan

(
δ |x′|2

)}
.

Hence, we have that any point x ∈ ∂Eε(t) satisfies

∂tx · ν = V · ν,
where

V =

{
−κen if xn > 0,

κen if xn < 0.

Thus,

∂tx · ν � −κ > −c0 � −Hs
Eε(t)

,

where in the last inequality we have used (15) and the fact that Eε(t) ⊂ Eε0 for
any t > 0. Therefore, the set Eε(t) is a smooth supersolution (hence also a viscosity
supersolution) to (1).

By the definition of the set Eε0 we have that the infimum distance between
the two disconnected components of its boundary {(x′, xn) ∈ R

n s.t. xn = ε0 +
arctan (δ|x′|2)} and {(x′, xn) ∈ R

n s.t. xn = −ε0−arctan (δ|x′|2)} is attained at the
points (0, . . . , 0, ε0) and (0, . . . , 0,−ε0). Since Eε(t) evolves with constant negative
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velocity κ along the inner vertical direction, we deduce that the singular time for
Eε(t) is given by

(18) TEε(t)
=

2ε0
κ

.

Let us now consider any closed set A0 with the following properties:

(1) A0 is rotationally symmetric around the x1 axis;
(2) A0 is symmetric with respect to the x1 = 0 hyperplane;
(3) A0 is contained in Eε0 ;
(4) A0 contains two balls B−

1 and B+
1 of radius 1 centered at (−L, 0, . . . , 0) and

(L, 0, . . . , 0) respectively, where L is chosen large enough so that (1) and
(2) are both satisfied.

We consider now the fractional mean curvature flow At starting from A0. By
uniqueness, At retains the symmetries of A0. By the comparison principle (Propo-
sition 4), At must be contained in Eε(t). Moreover it must contain the evolutions

B−
1,t and B+

1,t of the two balls B−
1 and B+

1 .

On the one hand, since At is contained in Eε(t), using (18) and the choice of ε0
(16), we deduce that at any time t > TA, where

TA =
2ε0
κ

� 1

2
TB1

,

the x1 = 0 cross section of At is empty.
On the other hand, by assumption (2), at the same time, At contains two balls

with positive radius in the x1 > 0 and x1 < 0 half-spaces respectively. This
shows that, at some time smaller than TA, the set At splits into two symmetric
disconnected components; hence it cannot shrink to a point. This concludes the
proof of Theorem 1. �
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[4] X. Cabré, M. M. Fall, J. Solá-Morales and T. Weth, Curves and surfaces with constant
nonlocal mean curvature: meeting Alexandrov and Delaunay, to appear in J. Reine Angew.
Math.

[5] L. Caffarelli, J.-M. Roquejoffre, and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl.
Math. 63 (2010), no. 9, 1111–1144. MR2675483

[6] Luis A. Caffarelli and Panagiotis E. Souganidis, Convergence of nonlocal threshold dynamics
approximations to front propagation, Arch. Ration. Mech. Anal. 195 (2010), no. 1, 1–23.
MR2564467

[7] Luis Caffarelli and Enrico Valdinoci, Regularity properties of nonlocal minimal surfaces via
limiting arguments, Adv. Math. 248 (2013), 843–871. MR3107529

[8] Antonin Chambolle, Massimiliano Morini, and Marcello Ponsiglione, A nonlocal mean curva-
ture flow and its semi-implicit time-discrete approximation, SIAM J. Math. Anal. 44 (2012),
no. 6, 4048–4077. MR3023439

[9] Antonin Chambolle, Massimiliano Morini, and Marcello Ponsiglione, Nonlocal curvature
flows, Arch. Ration. Mech. Anal. 218 (2015), no. 3, 1263–1329. MR3401008

http://www.ams.org/mathscinet-getitem?mr=2722655
http://www.ams.org/mathscinet-getitem?mr=1167827
http://www.ams.org/mathscinet-getitem?mr=3331523
http://www.ams.org/mathscinet-getitem?mr=2675483
http://www.ams.org/mathscinet-getitem?mr=2564467
http://www.ams.org/mathscinet-getitem?mr=3107529
http://www.ams.org/mathscinet-getitem?mr=3023439
http://www.ams.org/mathscinet-getitem?mr=3401008


2646 ELEONORA CINTI, CARLO SINESTRARI, AND ENRICO VALDINOCI

[10] Antonin Chambolle, Matteo Novaga, and Berardo Ruffini, Some results on anisotropic frac-
tional mean curvature flows, Interfaces Free Bound. 19 (2017), no. 3, 393–415. MR3713894

[11] Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto, Uniqueness and existence of viscosity
solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), no. 3,
749–786. MR1100211

[12] E. Cinti, J. Serra, and E. Valdinoci, Quantitative flatness results and BV -estimates for stable
nonlocal minimal surfaces, to appear in J. Differential Geom.

[13] Matteo Cozzi, On the variation of the fractional mean curvature under the effect of C1,α

perturbations, Discrete Contin. Dyn. Syst. 35 (2015), no. 12, 5769–5786. MR3393254
[14] Klaus Ecker, Regularity theory for mean curvature flow, Progress in Nonlinear Differen-

tial Equations and their Applications, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 2004.
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