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COHOMOLOGY RINGS OF MODULI OF POINT

CONFIGURATIONS ON THE PROJECTIVE LINE

HANS FRANZEN AND MARKUS REINEKE

(Communicated by Jerzy Weyman)

Abstract. We describe the Chow rings of moduli spaces of ordered config-
urations of points on the projective line for arbitrary (sufficiently generic)
stabilities. As an application, we exhibit such a moduli space admitting two
small desingularizations with non-isomorphic cohomology rings.

1. Introduction

One of the classical examples of geometric invariant theory is the moduli space
of ordered point configurations on the projective line [9, Chap. 3]. Recall that
this is the space of semi-stable ordered m-tuples of points in P1 modulo projective
equivalence, that is, modulo the action of the group PGL2. Here semi-stability
is typically understood with respect to the symmetric stability: a tuple of points
is semi-stable if at most m/2 points coincide. The resulting moduli space is an
irreducible normal projective variety of dimension m − 3. It is smooth for odd m,
and singular with isolated singularities in case m is even.

The (intersection) Betti numbers of this moduli space are determined in [9, Exs.
8.11, 8.15]. An explicit coordinatization is described in [6]. In the disguise of poly-
gon spaces, the rational cohomology ring is described by generators and relations in
[5]. In the case of the symmetric stability, a description of the rational Chow ring
is given in [2] using an interpretation as a moduli space of quiver representations.

In the present paper, we first use the approach via moduli spaces of quiver
representations (the necessary prerequisites being recalled in Section 3) to give a
unified presentation of the rational Chow ring for arbitrary (sufficiently generic)
stabilities in Section 5; see Theorem 13. We first describe the rational Chow ring of
the quotient stack of all ordered tuples by projective equivalence and then determine
the remaining relations arising from the open embedding of the moduli space.

As our main application of this description, we show that the moduli spaces of
an even number of points (with respect to symmetric stability) admit two small
desingularizations with non-isomorphic rational cohomology rings; see Corollary
18. The existence of such spaces is a classical topic of intersection homology theory,
disproving the existence of a natural ring structure in intersection homology. The
classical example of such a space is the Schubert variety

{V ∈ Gr2(C
5) | dim(V ∩ C3) ≥ 1};
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see [4, Ex. 2]. Using a general analysis of stability conditions in Section 4, we
single out two stabilities deforming the symmetric one. It is shown in [10] that the
corresponding moduli spaces provide small resolutions of singularities. Using the
explicit description of their Chow rings, we prove the claim purely algebraically in
Sections 6 and 7.

2. The moduli space of points on the projective line

We are concerned with the action of the group PGL2 on the product (P1)m. Let
r1, . . . , rm be even positive integers and consider the line bundles Li = π∗

iO(1),
where πi : (P

1)m → P1 is the projection to the ith factor. Let L = Lr1
1 ⊗ . . .⊗Lrm

m .
The line bundle L possesses a PGL2-linearization (see [9, Sect. 3.1]). Let

Xst(L) ⊆ Xsst(L) ⊆ (P1)m

be the open subsets of properly stable and semi-stable points, respectively, accord-
ing to [9, Defs. 1.7, 1.8]. Note that we depart from Mumford’s notation here. He
denotes the set of properly stable points by Xst

(0)(L). We do this because in the
world of quiver representations, a stable representation will actually be a properly
stable point of the representation variety (with respect to a suitable line bundle);
see [7, Def. 2.1]. Let r = (r1 + . . . + rm)/2 and define θi = ri/r. We obtain a se-
quence θ = (θ1, . . . , θm) of positive rationals which sum to 2. Mumford’s numerical
criterion [9, Thm. 2.1] (cf. also [9, Prop. 3.4]) yields that semi-stability and proper
stability can be characterized by θ:

Proposition 1. Let p = (p1, . . . , pm) be a tuple of points on P1. The point config-
uration p lies in Xsst(L) (resp. Xst(L)) if and only if not all pi (with i ∈ I) agree
whenever I ⊆ {1, . . . ,m} is a subset with θI > 1 (resp. θI ≥ 1).

In the above proposition, θI is defined as
∑

i∈I θi. This characterization shows

that the sets Xsst(L) and Xst(L) depend only on θ. Hence we denote Mθ−sst =
Xsst(L)//PGL2 and Mθ−st = Xst(L)/PGL2. The quotient map π : Xsst(L) →
Mθ−sst is a categorical quotient, and Mθ−st is an open subset of Mθ−sst. The
restriction of π to Xst(L) → Mθ−st is a geometric quotient, even a principal PGL2-
fiber bundle in the étale topology. It follows that Mθ−st is smooth. If every
semi-stable point p ∈ (P1)m is already properly stable for L, then we write Mθ

for Mθ−sst = Mθ−st. If there exist semi-stable points that are not properly stable,
then one can show that Mθ−sst is singular.

Of particular interest is the symmetric stability condition, i.e., L = L2
1⊗. . .⊗L2

m;
its associated sequence of rationals is θ0 = (2/m, . . . , 2/m). In this case a point
configuration p = (p1, . . . , pm) is semi-stable (resp. properly stable) if and only if
no more than �m/2	 (resp. no more than 
m/2� − 1) of the pi’s coincide. If m is

odd, then semi-stability and proper stability agree, but if m is even, then Mθ0−sst

is singular.
We are going to construct—when m is even—two small desingularizations of

Mθ0−sst whose cohomology rings are not isomorphic. Our strategy is to identify
Mθ−sst (resp. Mθ−st)—for an arbitrary θ—with moduli spaces of quiver represen-
tations. This identification allows us to construct small desingularizations using
Theorem 2, and we are able to derive presentations of the cohomology rings with
Theorem 3 that help us to prove that the ring structures on the cohomology of the
two resolutions of singularities that we find differ.
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3. Moduli of quiver representations

A quiver Q is a finite oriented graph. Denote its set of vertices by Q0 and
its set of arrows by Q1. A complex representation M of Q consists of complex
vector spaces Mi for every i ∈ Q0 and linear maps Ma : Mi → Mj attached
to every arrow a : i → j. There is an obvious notion of a homomorphism of
representations yielding an abelian category of all (complex) representations of Q.
Our representations will always be assumed to be finite-dimensional (i.e., every Mi

is a finite-dimensional vector space). In this case, we can define the dimension
vector dimM = (dimMi)i∈Q0

. Fix a dimension vector d ∈ Z
Q0

≥0 and consider the
vector space

R(Q, d) =
⊕
a:i→j

Hom(Cdi ,Cdj ).

Its elements can be regarded as representations of Q of dimension vector d. On
R(Q, d) we have an action of the complex linear algebraic group GLd =

∏
i∈Q0

GLdi

by change of basis. The diagonally embedded multiplicative group acts trivially
whence the GLd-action descends to an action of PGLd = GLd /C

×. The orbits of
this group action are in one-to-one correspondence with the isomorphism classes of
(complex) representations of Q of dimension vector d. We can also interpret this
set as the set of C-valued points of the quotient stack [R(Q, d)/PGLd].

If we want the quotient to carry a “nicer” geometric structure, we have to im-
pose a stability condition. In King’s article [7] Mumford’s criterion (cf. [9, Thm.
2.1]) is translated to a purely algebraic condition. Fix a dimension vector d.
Let θ : QQ0 → Q be a linear map for which θ(d) = 0. A representation M
of Q of dimension vector d is called θ-semi-stable (θ-stable)1 if θ(dimM ′) ≤ 0
(resp. θ(dimM ′) < 0) for every proper, non-zero subrepresentation M ′ of M .
The category of θ-semi-stable representations is an abelian finite length category;
the simple objects of this category are the θ-stable representations. We consider
the open subsets R(Q, d)θ−st ⊆ R(Q, d)θ−sst ⊆ R(Q, d). The categorical quo-
tient M(Q, d)θ−sst = R(Q, d)θ−sst//PGLd parametrizes isomorphism classes of θ-
polystable representations of dimension vector d; these are the semi-simple ob-
jects of the category of semi-stable representations. The image of the stable locus
R(Q, d)θ−st under the quotient map R(Q, d)θ−sst → M(Q, d)θ−sst is an open subset
M(Q, d)θ−st, and the restriction R(Q, d)θ−st → M(Q, d)θ−st is a geometric PGLd-
quotient in the sense of Mumford [9, Def. 0.6], even a principal fiber bundle in the
étale topology. In particular, M(Q, d)θ−st is smooth. Its points are in one-to-one
correspondence with isomorphism classes of θ-stable representations of dimension
vector d. In the case that the quiver has no oriented cycles the variety M(Q, d)θ−sst

is projective (see [7, Prop. 4.3]).
If every θ-semi-stable representation of dimension d is stable, then the moduli

spaces M(Q, d)θ−sst and M(Q, d)θ−st agree; we write M(Q, d)θ in this case. For
example, this is the case if d is θ-coprime, which means that θ(e) = 0 for every
dimension vector 0 ≤ e ≤ d, unless e = 0 or e = d. In this context e ≤ d means
ei ≤ di for every i ∈ Q0. If d is θ-coprime for some stability condition θ, then d is
necessarily indivisible (i.e., gcd(di | i ∈ Q0) = 1). Conversely, if d is indivisible, we
find a stability condition for which d is coprime.

1Note that in [2] θ-stability of a representation M was defined by θ(M ′) > 0 for every sub-
representation M ′. We use the opposite sign convention to match it with Mumford’s definition of
stability.
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However, if there are properly semi-stable points for θ, then the variety
M(Q, d)θ−sst is typically singular. The paper [10] deals with the question of when
small desingularizations can be constructed.

Recall that a small desingularization of a variety2 X is a proper birational map
f : Y → X from a smooth variety for which there exists a stratification X =

⊔
Xi

into locally closed subsets Xi over each of which f is étale locally trivial and such
that

dim f−1(x) ≤ 1

2
codimX(Xi)

for every x ∈ Xi, the estimate being strict for all strata but the dense open one. The
idea for constructing small desingularizations of M(Q, d)θ−sst is to find a stability
condition θ′ “close to” θ which is sufficiently generic.

Definition ([10, Def. 3.1]). Let d be a dimension vector of Q and let θ be a stability
condition such that θ(d) = 0. A stability condition θ′ of Q with θ′(d) = 0 is called a
deformation of θ with respect to d if the following conditions hold for every proper,
non-zero subdimension vector 0 ≤ e ≤ d:

(1) θ(e) < 0 implies θ′(e) < 0, and
(2) θ′(e) ≤ 0 implies θ(e) ≤ 0.

A deformation θ′ of θ with respect to d is called generic if d is θ′-coprime.

We need to introduce the Euler form of the quiver Q. It is the bilinear form
χQ : ZQ0 × ZQ0 → Z defined by

χQ(d, e) =
∑
i∈Q0

diei −
∑

α:i→j

diej .

In general χQ is not symmetric. But if it is, or rather its restriction to the kernel
of the stability condition, small desingularizations can be obtained from a generic
deformation of the stability condition:

Theorem 2 ([10, Thm. 4.3]). Let Q be a quiver, let d be an indivisible dimension
vector of Q, and let θ be a stability condition with θ(d) = 0 such that a θ-stable
representation of dimension d exists. Suppose that χQ is a symmetric bilinear form

on ker(θ). Then the natural morphism p : M(Q, d)θ
′ → M(Q, d)θ−sst induced by a

generic deformation θ′ of θ is a small desingularization.

We want to recall a description of the equivariant Chow ring with rational co-
efficients A∗

PGLd
(R(Q, d)θ−sst)Q; see [1, Sect. 2.6] for the definition of equivari-

ant Chow rings. For simplicity we will always use rational coefficients, although
it is not always necessary. Let Td be the maximal torus of GLd that consists
of invertible diagonal matrices and let PTd be the quotient by the diagonally
embedded C×. The character group of Td is the free group generated by xi,r

with i ∈ Q0 and r = 1, . . . , di, and the character group of PTd is the subgroup
X(PTd) = {

∑
i,r ai,rxi,r |

∑
i,r ai,r = 0}. The equivariant Chow ring A∗

PTd
(pt)Q is

the subring Q[xj,s − xi,r | i, j ∈ Q0, r = 1, . . . , di, s = 1, . . . , dj ] of the polynomial
ring A∗

Td
(pt)Q = Q[xi,r | i ∈ Q0, r = 1, . . . , di]. The ring A∗

PTd
(pt)Q is itself a

polynomial ring as X(PTd) is a free abelian group, but we don’t want to choose

2Variety means irreducible here and in the following.
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a basis here. The equivariant Chow ring A∗
PGLd

(R(Q, d))Q ∼= A∗
PGLd

(pt)Q agrees
with the ring

A∗
PT (pt)

Wd

Q = Q[xj,s − xi,r | i, j ∈ Q0, r = 1, . . . , di, s = 1, . . . , dj ]
Wd ,

where Wd =
∏

i Sdi
acts by permutation of the variables xi,r. These variables are

characters of a maximal torus of GLd, andWd is the corresponding Weyl group. The
ring A∗

PGLd
(R(Q, d)θ−sst)Q is a quotient of A∗

PGLd
(R(Q, d))Q. The kernel of the pull-

back A∗
PGLd

(R(Q, d))Q → A∗
PGLd

(R(Q, d)θ−sst)Q can be described by tautological
relations in the sense of [2]. A θ-forbidden decomposition of d is a decomposition
d = p+ q into dimension vectors for which θ(p) > 0. For such a decomposition we
consider the element

fp,q =
∏

α:i→j

pi∏
r=1

dj∏
s=pj+1

(xj,s − xi,r)

and the principal ideal Ip,q = (fp,q) in the ring A∗
PTd

(pt)
Wp×Wq

Q . Let

ρp,q : A∗
PTd

(pt)
Wp×Wq

Q → A∗
PTd

(pt)Wd

Q

be the A∗
PTd

(pt)Wd

Q -linear map defined by

ρp,q(f) =
∑
σ

σf ·
∏
i

pi∏
r=1

di∏
s=pi+1

(xi,σi(s) − xi,σi(r))
−1,

where σ = (σi)i ∈ Wd ranges over all (p, q)-shuffles; that means each σi is a (pi, qi)-
shuffle permutation.

Theorem 3. The equivariant Chow ring A∗
PGLd

(R(Q, d)θ−sst)Q is isomorphic to
the quotient of the ring A∗

PTd
(pt)Wd

Q by the ideal∑
p,q

ρp,q(Ip,q).

Proof. This can be proved using the same arguments as in [3, Thm. 8.1]. There the
GLd-equivariant Chow ring of the semi-stable locus is considered, but the arguments
can be applied for the PGLd-equivariant situation as well. �

Remark 4. It can be shown analogously to [3, Thm. 5.1] that the equivariant cycle
map A∗

PGLd
(R(Q, d)θ−sst)Q → H∗

PGLd
(R(Q, d)θ−sst;Q) is an isomorphism. In the

case that Q is acyclic and d is θ-coprime this is shown in [8, Thm. 3].

4. Moduli of point configurations as quiver moduli

Let m ≥ 3. Fix a sequence θ = (θ1, . . . , θm) of positive rational numbers which
sum to 2 and consider the quotients Mθ−sst and Mθ−st introduced in Section 2.

Let Um be the m-subspace quiver. It consists of m sources and one sink—
formally Q0 = {1, . . . ,m,∞} with ∞ being the sink—and has one arrow pointing
from every source to the sink. Let d = (1, . . . , 1; 2), i.e., di = 1 for i = 1, . . . ,m and
d∞ = 2, i.e., the dimension vector with ones at every source and two at the sink.
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Pictorially, the quiver and the dimension vector are given by

•

• • . . . •

2

1 1 1.

Let R = R(Um, d) ∼= (C2)m. The group GLd is (C×)m×GL2(C), and it acts on the
vector space R via (t1, . . . , tm, g).(v1, . . . , vm) = (t−1

1 gv1, . . . , t
−1
m gvm). Abbreviate

G = PGLd = ((C×)m ×GL2)/C
×.

From the rational numbers θ1, . . . , θm we construct a stability condition for Um

which we, by slight abuse of notation, also denote by θ. The value of θ at the
ith source is θi, while the value at the sink is defined as θ∞ = −1. This stability
condition satisfies θ(d) = 0.

Lemma 5. Let v = (v1, . . . , vm) be a point of R. The representation v is semi-
stable (resp. stable) if and only if every vi is non-zero and {vi | i ∈ I} spans C2

whenever I ⊆ {1, . . . ,m} is a subset satisfying θI > 1 (resp. θI ≥ 1).

Proof. Let (v1, . . . , vm) be semi-stable. If vi were 0, then there would be a sub-
representation of dimension vector ei = (0, . . . , 1, . . . , 0; 0) (with a one in the ith

position). But θ(ei) = θi > 0, which contradicts semi-stability. For a subset I with
θI > 1 we apply a similar argument: Suppose that the span of {vi | i ∈ I} were
a proper subspace of C2. Then this would yield a subrepresentation of dimension
vector d′ =

∑
i∈I ei+e∞. So θ(d′) = θI−1 > 0. Again a contradiction. Conversely,

suppose that v satisfies the numerical conditions of the lemma. The only subdi-
mension vectors of d = (1, . . . , 1; 2) which have a positive θ-value are of the form∑

i∈I ei + ne∞ with either n = 0 and I = ∅ or n = 1 and θI > 1. All of these sub-
dimension vectors cannot belong to subrepresentations of v. The characterization
of stability can be shown in just the same way. �
Proposition 6. There is a natural isomorphism Mθ−sst ∼= Mθ−sst(Um, d) which
restricts to an isomorphism Mθ−st ∼= Mθ−st(Um, d).

Proof. Let L be the corresponding line bundle on (P1)m (uniquely determined by
θ up to a positive power). The set Rθ−sst(Um, d) is contained in (C2 − {0})m by
Lemma 5. It is easy to see, using Proposition 1 and Lemma 5, that Rθ−sst(Um, d) is
precisely the inverse image ofXsst(L) under the map� : (C2−{0})m → (P1)m. The
same holds for the stable loci. As � is a geometric quotient by the group (C×)m,
it induces an isomorphism Rθ−sst(Um, d)//G

∼=−→ Xsst(L)//PGL2 which restricts to
an isomorphism Rθ−st(Um, d)/G

∼=−→Xst(L)/PGL2. �
Lemma 5 shows that the subsets I ⊆ {1, . . . ,m} with θI > 1 play an important

role. We call those subsets θ-forbidden. Denote by Iθ the set of all θ-forbidden
subsets.

Lemma 7. Let θ = (θ1, . . . , θm) be a sequence of positive rational numbers with
θ1 + . . .+ θm = 2. Interpret it as a stability condition for Um.

(1) The θ-stable locus is non-empty if and only if θi < 1 for every 1 = 1, . . . ,m.
(2) The dimension vector (1, . . . , 1; 2) is θ-coprime if and only if θI :=

∑
i∈I θi

= 1 for every non-empty proper subset I of {1, . . . ,m}.
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(3) Let θ′ be another such stability condition. In this case θ′ is a deformation
of θ with respect to (1, . . . , 1; 2) if and only if
(a) θI < 1 implies θ′I < 1 and
(b) θ′I ≤ 1 implies θI ≤ 1
for every proper non-empty subset I ⊆ {1, . . . ,m}.

Proof. All three claims follow from Lemma 5. To show the first assertion assume
θi ≥ 1 for some i. For any v = (v1, . . . , vm) ∈ R, the span of vi is at most one-
dimensional, so v is not stable. Conversely if all θi < 1, then a point v consisting
of pairwise linearly independent vectors is stable. Assertions (2) and (3) are also
direct applications of Lemma 5. �

From now on we will deal with the case where m is even. Say m = 2n. The
symmetric stability condition is θ0 = (1/n, . . . , 1/n). We will consider two generic
deformations θ+ and θ− of θ0 given by

θ+ = (
1

n
+ ε,

1

n
− ε

2n− 1
, . . . ,

1

n
− ε

2n− 1
;−1),

θ− = (
1

n
− ε,

1

n
+

ε

2n− 1
, . . . ,

1

n
+

ε

2n− 1
;−1)

for a sufficiently small rational number ε. We analyze the forbidden subsets for
these three stability conditions.

Lemma 8. Let m = 2n. For ε sufficiently small d = (1, . . . , 1; 2) is coprime for
both θ+ and θ−, and the sets of forbidden subsets for θ0, θ+, and θ− are

Iθ0

= {I | |I| > n},

Iθ+

= Iθ0 � {I | |I| = n and 1 ∈ I},

Iθ−
= Iθ0 � {I | |I| = n and 1 /∈ I}.

As a consequence θ+ and θ− are generic deformations of θ0.

Proof. If I ⊆ {1, . . . ,m} is a subset with k elements, then the θ+-value of I is

θ+I =

{
k
n + 2n−k

2n−1 ε if 1 ∈ I,
k
n − k

2n−1ε if 1 /∈ I.

If ε is smaller than 2n−1
n(n+1) , which ensures that n−1

n + n+1
2n−1ε < 1 and n+1

n − n+1
2n−1ε > 1,

then θ+I = 1 and, moreover, the set of θ+-forbidden subsets is as asserted. The proof
for θ− works in the same fashion. �

An immediate consequence of Lemma 8 and Theorem 2 is the following.

Proposition 9. With the notation as in Lemma 8, both Mθ+

and Mθ−
are small

desingularizations of Mθ0−sst.

Proof. To make sure Theorem 2 is applicable we need to check that the Euler
form restricted to ker(θ0) is symmetric. Let d = (d1, . . . , d2n; d∞) and let e =

(e1, . . . , e2n; e∞) be contained in the kernel of θ0. That means nd∞ =
∑2n

i=1 di and
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ne∞ =
∑2n

i=1 ei. Thus

χU2n
(d, e) =

2n∑
i=1

diei + d∞e∞ −
2n∑
i=1

die∞

=
2n∑
i=1

diei + d∞e∞ − 1

n

2n∑
i,j=1

diej = χU2n
(e, d).

�

5. Chow rings of moduli of point configurations

In order to compute and compare the Chow rings of the two small desingu-
larizations obtained in Proposition 9 it will be useful to also discuss Chow rings

of semi-stable moduli stacks. In fact, A∗(Mθ+

)Q and A∗(Mθ−
)Q will turn out

to be quotients of the Chow ring of the θ0-semi-stable moduli stack (see Corol-
lary 15). To compute an explicit presentation of all these rings, we will apply
Theorem 3 to moduli of points on P1, i.e., moduli of representation of Um with
dimension vector d = (1, . . . , 1; 2); cf. also [2, Cor. 29]. The equivariant Chow ring
A∗

PTd
(pt)Q is the subring Q[yj − xi | i = 1, . . . ,m, j = 1, 2] of the polynomial ring

Q[x1, . . . , xm, y1, y2]. Denote y = y1 + y2 and z = y1y2.

Lemma 10. The ring A∗
PGLd

(pt)Q = Q[yj − xi | i = 1, . . . ,m, j = 1, 2]S2 is
generated by the algebraically independent elements Xi =

1
2y−xi (all i = 1, . . . ,m)

and Y = 1
4y

2 − z.

Proof. It is obvious that Xi and Y are elements of the ring in question, and it is
easy to show that they are algebraically independent. The fact that the generating
series of that ring is (1− q)−m(1− q2)−1 concludes the proof. �

First of all, we consider the moduli stack M of m points in P1 up to PGL2-
action. We define U = {(v1, . . . , vm) ∈ (C2)m | vi = 0 (all i)}. It is an open
subset of R(Um, d) = (C2)m, and M is precisely the quotient stack [U/PGLd].
The Chow ring of a quotient stack [X/G], for a linear algebraic group G acting
on an algebraic scheme X, is defined as the equivariant Chow ring A∗

G(X); see the
discussion in [1, Sect. 5.3] for why this is reasonable. The identification of M with
[U/PGLd] shows that the Chow ring A∗(M)Q = A∗

PGL2
((P1)m)Q is isomorphic to

A∗([U/PGLd])Q = A∗
PGLd

(U)Q, which is a quotient of Q[X1, . . . , Xm, Y ]. We show
the following.

Lemma 11. The Chow ring A∗(M)Q = A∗
PGL2

((P1)m)Q with rational coefficients

is isomorphic to Q[X1, . . . , Xm, Y ]/(X2
i − Y | i = 1, . . . ,m).

Proof. The proof works in the same fashion as the proof of [3, Thm. 8.1]. We give
it for completeness. The complement of U inside R = (C2)m is the union

⋃m
i=1 Zi

of subspaces Zi = {(v1, . . . , vm) | vi = 0}. The class [Zi] in the equivariant Chow
ring A∗

PGLd
(R(Um, d)) = Q[yj − xi | i, j] is (y1 − xi)(y2 − xi). We see that

(y1 − xi)(y2 − xi) = z − xiy + x2
i = X2

i − Y.

Using the fact that the map
⊕

i A
∗
PGLd

(Zi)Q → A∗
PGLd

(R(Um, d))Q surjects onto
the kernel of the map A∗

PGLd
(R(Um, d))Q → A∗(M)Q completes the proof. �
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We consider a non-trivial stability condition θ given by rational numbers θ1, . . . ,
θm as described in the previous section. The quotient stack

Mθ−sst = [R(Um, d)θ−sst/PGLd]

is an open substack of M. Therefore A∗(Mθ−sst) is a quotient of A = A∗(M)Q =
Q[X1, . . . , Xm]/(X2

i = X2
j ).

For every subset I ⊆ {1, . . . ,m} we define

f I =
∏
i∈I

(y2 − xi);

it is an element of A∗
PTd

(pt)Q. Let I ∈ Iθ; i.e., I is a θ-forbidden subset. For such
I, the dimension vector dI = (dI,1, . . . , dI,m; 1)—with dI,i = 1 if i ∈ I and dI,i = 0
otherwise—has a positive θ-value, hence gives a θ-forbidden decomposition d =
dI +(d−dI). The polynomial attached to this forbidden decomposition is precisely
f I . Applying Theorem 3 yields that the kernel of A∗(M)Q → A∗(Mθ−sst)Q is
generated by the elements

ρ(f I) =
∑
J�I

(−1)|J|xJ

|I−J|−1∑
ν=0

yν1y
|I−J|−1−ν
2 ,

ρ(f I(y2 − y1)) =
∑
J⊆I

(−1)|J|xJ (y
|I−J|
1 + y

|I−J|
2 ),

where ρ : A∗
PTd

(pt)Q → A∗
PTd

(pt)S2 is the symmetrization map.

Lemma 12. Let I ⊆ {1, . . . ,m} be a subset of cardinality k. Then

ρ(f I) =


 k−1
2 �∑

ν=0

ek−1−2ν(Xi | i ∈ I)Y ν ,

1

2
ρ(f I(y2 − y1)) =


 k
2 �∑

ν=0

ek−2ν(Xi | i ∈ I)Y ν .

Proof. We prove the two equalities asserted in the lemma by induction on k. It
suffices to check them for the sets I = {1, . . . , k}. Let Rk = ρ(f{1,...,k}) and
Sk = 1

2ρ(f
{1,...,k}(y2 − y1)) and denote by R̃k, resp. S̃k, the right-hand sides of the

equations, i.e.,

R̃k =


 k−1
2 �∑

ν=0

ek−1−2ν(X1, . . . , Xk)Y
ν , S̃k =


 k
2 �∑

ν=0

ek−2ν(X1, . . . , Xk)Y
ν .

We see that R0 = 0 = R̃0 and S0 = 1 = S̃1. Obviously the expressions R̃k and S̃k

satisfy the relations

R̃k = XkR̃k−1 + S̃k−1, S̃k = XkS̃k−1 + Y R̃k−1.

To complete the proof, it suffices to show that these relations hold for Rk and Sk

as well. This is an easy but lengthy computation. We give it here for completeness.
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The expression XkRk−1 + Sk−1 equals(
1

2
(y1 + y2)− xk

) k−2∑
j=0

(−1)jej(x1, . . . , xk−1)

k−j−2∑
ν=0

yν1y
k−j−2−ν
2

+
1

2

k−1∑
j=0

(−1)jej(x1, . . . , xk−1)(y
k−j−1
1 + yk−j−1

2 ),

which agrees with

1

2

k−2∑
j=0

(−1)jej(x1, . . . , xk−1)
(
yk−j−1
1 +

k−j−2∑
ν=0

(yν+1
1 yk−j−2−ν

2 + yν1y
k−j−1−ν
2 )+yk−j−1

2

)
︸ ︷︷ ︸

=
∑k−j−1

ν=0 yν
1 y

k−j−1−ν
2

−
k−2∑
j=0

(−1)jxkej(x1, . . . , xk−1)

k−j−2∑
ν=0

yν1y
k−j−2−ν
2 ,

and that equals

k−1∑
j=0

(−1)j
(
ej(x1, . . . , xk−1) + xkej−1(x1, . . . , xk−1)

) k−j−1∑
ν=0

yν1y
k−j−1−ν
2 ,

which is just Rk when interpreting e−1(x1, . . . , xk−1) as zero. For Sk the computa-
tion reads as follows: The term XkSk−1 + Y Rk−1 is equal to(

1

2
(y1 + y2)− xk

)
· 1
2

k−1∑
j=0

(−1)jej(x1, . . . , xk−1)(y
k−j−1
1 + yk−j−1

2 )

+

(
1

4
(y1 + y2)

2 − y1y2

) k−2∑
j=0

(−1)jej(x1, . . . , xk−1)

k−j−2∑
ν=0

yν1y
k−j−2−ν
2 ,

which can be re-written as

1

4

k−1∑
j=0

(−1)jej(x1, . . . , xk−1)(y
k−j
1 + y1y2(y

k−j−2
1 + yk−j−2

2 ) + yk−j
2 )

− 1

2

k−1∑
j=0

(−1)jxkej(x1, . . . , xk−1)(y
k−j−1
1 + yk−j−1

2 )

+
1

4

k−2∑
j=0

(−1)jej(x1, . . . , xk−1)

k−j−2∑
ν=0

(yν+2
1 yk−j−2−ν

2 − 2yν+1
1 yk−j−1−ν

2 +yν1y
k−j−ν
2 )

︸ ︷︷ ︸
=yk−j

1 −y1y2(y
k−j−2
1 +yk−j−2

2 )+yk−j
2

,

and that is the same as

1

2

k∑
j=0

(−1)j
(
ej(x1, . . . , xk−1 + xkej−1(x1, . . . , xk−1)

)
(yk−j

1 + yk−j
2 ).

This equals Sk. Here we formally need to set ek(x1, . . . , xk−1) = 0. The lemma is
proved. �
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We put RI = ρ(f I) and SI = 1
2ρ((y2 − y1)f

I). Note also that the relations

RI = XiRI−{i} + SI−{i}, SI = XiSI−{i} + Y RI−{i}(∗)

imply that we may restrict to minimal forbidden subsets I, i.e., minimal elements
of Iθ with respect to inclusion. Denote the set of those minimal forbidden subsets
with Iθ

min.

Theorem 13. The Chow ring A∗(Mθ−sst)Q is the quotient of the ring

Q[X1, . . . , Xm, Y ]/(X2
i − Y )

by the ideal generated by the elements

RI =


 k−1
2 �∑

ν=0

ek−1−2ν(Xi | i ∈ I)Y ν and SI =


 k
2 �∑

ν=0

ek−2ν(Xi | i ∈ I)Y ν ,

with I ∈ Iθ
min.

Proof. Let A = Q[X1, . . . , Xm, Y ]/(X2
i − Y ). Applying Lemmas 10, 11, and 12 to

Theorem 3 yields A∗(Mθ−sst)Q = A/(RI , SI | I ∈ Iθ). The relations (∗) show that
the ideal (RI , SI | I ∈ Iθ

min) agrees with (RI , SI | I ∈ Iθ). �

Remark 14. Note that if there is a principal bundle quotient X/G for the ac-
tion of a linear algebraic group on an algebraic scheme X, then, by [1, Prop.
8], the equivariant Chow ring A∗

G(X) coincides with the Chow ring A∗(X/G) of
the quotient. Therefore, if θ is a generic stability condition, that means every
semi-stable point for θ is already stable, and the Chow ring of the moduli stack
A∗(Mθ−sst)Q = A∗

PGLd
(R(Um, d)θ−sst)Q equals the Chow ring of the moduli space

Mθ = R(Um, d)θ−st/PGLd. So in the generic case Theorem 13 actually gives a
description of A∗(Mθ)Q.

We show how this applies to the stability conditions θ0, θ+, and θ− in the case
that m = 2n. A combination of the previous theorem with Lemma 8 yields

Corollary 15. The rings A0 = A∗(Mθ0−sst)Q and A± = A∗(Mθ±
)Q are quotients

of the ring A = Q[X1, . . . , X2n, Y ]/(X2
i − Y ) by ideals a0 and a±, which are given

by

a0 = (RI , SI | I ⊆ {1, . . . , 2n}, |I| = n+ 1),

a+ = (RI , SI | I ⊆ {1, . . . , 2n}, |I| = n, 1 ∈ I) + a0,

a− = (RI , SI | I ⊆ {1, . . . , 2n}, |I| = n, 1 /∈ I) + a0.

6. Automorphisms

Consider A = Q[X1, . . . , Xm, Y ]/(X2
i − Y ) = Q[X1, . . . , Xm]/(X2

i = X2
j ). We

want to determine the automorphism group of this graded ring. For this, consider
the following automorphisms of the polynomial ring Q[X1, . . . , Xm].

• For a non-zero rational d, we denote by md the dilation with d.
• Let σ ∈ Sm be a permutation. The automorphism that sends Xi to Xσ(i)

will be called πσ.
• Given i ∈ {1, . . . ,m}, let τi be τi(f) = f(X1, . . . ,−Xi, . . . , Xm).
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We verify immediately that the above-mentioned automorphisms of the polyno-
mial ring leave the ideal (X2

i −X2
j | i, j = 1, . . . ,m) invariant. Hence they descend

to automorphisms of the ring A. We denote them with the same symbol. The rest
of the section will be devoted to the proof of

Proposition 16. If m > 2, then the group Aut(A) is generated by the elements
md (d ∈ Q×), πσ (where σ ∈ Sm), and τi (i ∈ {1, . . . ,m}).

Proof. Let ϕ be an automorphism of A. It is given by an invertible matrix A =
(aij) ∈ GLm(Q)—that means ϕ(Xj) =

∑
i aijXi—such that ϕ(Xj1)

2 − ϕ(Xj2)
2 is

contained in the ideal generated by the expressions X2
i1
−X2

i2
. We compute

ϕ(Xj1)
2 − ϕ(Xj2)

2 =
∑
i

(a2ij1 − a2ij2)x
2
i + 2

∑
i1<i2

(ai1j1ai2j1 − ai1j2ai2j2)xi1xi2 .

From this we deduce the relations

(a)
∑

i a
2
ij1

=
∑

i a
2
ij2

,
(b) ai1j1ai2j1 = ai1j2ai2j2

for all i1 < i2 and all j1 < j2.
We assume there is an index j for which the jth column contains two non-zero

entries, say ai1jai2j = 0. From relation (b) we deduce that ai1j′ai2j′ = 0 for every
other column index j′ and

ai2j′ =
ai1jai2j
ai1j′

.

Suppose there were a third non-zero entry ai3j in the jth column. We apply relation
(b) for i1, i3, and i2, i3 and obtain

ai3j′ =
ai1jai3j
ai1j′

, ai3j′ =
ai2jai3j
ai2j′

=
ai1j′ai3j
ai1j

,

so consequently ai1j = ai1j′ , and in a similar vein ai2j = ai2j′ and ai3j = ai3j′ . As
i3 was chosen arbitrarily, we deduce that the j′th column would have to be equal to
the jth, which contradicts the fact that A is invertible. This shows that under the
assumption that there is a column which contains more than one non-zero entry,
it would have to have precisely two, and every other column would have precisely
two non-vanishing entries in the exact same positions. This is absurd because the
matrix A is assumed to have at least 3 columns.

Summarizing, A is a matrix with at most one non-zero entry in every column.
As the column sums are all the same by relation (a), we can apply a dilation to
make it a matrix with entries 0 or ±1. By regularity of A, every row of A has also
precisely one non-zero entry. Therefore, up to the application of some τi’s, it is a
permutation matrix. The proposition is proved. �

7. The ring structure

Theorem 17. The rings A∗(Mθ+

)Q and A∗(Mθ−
)Q are not isomorphic if n ≥ 3.

Proof. We first treat the smallest case n = 3 since it forms a blueprint of the proof

in the general case. We abbreviate A± = A∗(Mθ±
)Q. We claim that A− contains a

non-zero 2-nilpotent element which is homogeneous of degree 1, whereas A+ does
not.
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Indeed, for all 2 ≤ i < j < k ≤ 6, we have the degree 2 relation Y + (XiXj +
XiXk +XjXk) = 0 in A−, as well as X2

i = Y . Summing four of these relations, we
find 4Y +2e2(X2, X3, X4, X5) = 0, and thus (X2+X3+X4+X5)

2 = 0 as claimed.
On the other hand, the relations of degree 2 in A+ are generated by

Y +X1(Xi +Xj) +XiXj = 0 for all 2 ≤ i < j ≤ 6,

and by X2
i = Y . Assume that x =

∑6
i=1 aiXi is a 2-nilpotent homogeneous element

of degree 1. Thus

0 =

6∑
i=1

a2i X2
i︸︷︷︸

=Y

+2

6∑
i=2

a1aiX1Xi +
∑

2≤i<j≤6

aiaj XiXj︸ ︷︷ ︸
=−Y−X1(Xi+Xj)

= (

6∑
i=1

a2i − 2
∑

2≤i<j≤6

aiaj)Y + 2

6∑
i=2

(a1ai −
6∑

j=2
j =i

aiaj)X1Xi,

and hence we find the two conditions
6∑

i=1

a2i = 2
∑

2≤i<j≤6

aiaj , ai(a1 + ai −
6∑

j=2

aj) = 0

for all i = 2, . . . , 6. Let I ⊆ {2, . . . , 6} be the set of indices i for which ai = 0. If
I is empty, the first condition implies a1 = 0; thus x = 0 as claimed. Otherwise,
for i ∈ I, we have ai =

∑6
j=2 aj − a1 =: c = 0. Denoting k = |I|, we thus find

a1 = (k − 1)c, and the first condition yields (k − 1)2c2 + kc2 = k(k − 1)c2, a
contradiction.

We now turn to the general case n ≥ 4. Using the descriptions in Corollary 15
we see that the generators of a± have degree at least n− 1. We assume there is an
isomorphism ϕ : A+ → A− of graded algebras. It is induced by an automorphism
of the polynomial algebra Q[X1, . . . , X2n, Y ]. As n− 1 ≥ 3, this isomorphism must
descend to an automorphism ϕ of the algebra A. We read off the classification
in Proposition 16 that ϕ must leave the ideal (Y ) invariant. The isomorphism
ϕ : A+ → A− would hence yield an isomorphism

ϕ : A+/(Y ) → A−/(Y ).

Abbreviate B± = A±/(Y ). We show that the rings B+ and B− can’t be isomorphic.
Both B+ and B− are quotients of Q[X1, . . . , X2n]/(X

2
i ) = B. The only relations of

degree n− 1 that define B+ inside B are

en−1(X1, Xi2 , . . . , Xin) = 0

for all 2 ≤ i2 < . . . < in ≤ 2n. This shows that a basis of the (n−1)st homogeneous
component of B+ is given by the monomials XJ =

∏
j∈J Xj with J ranging over

all subsets of {1, . . . , 2n} with 1 ∈ J and |J | = n − 1. A monomial XJ with
J ⊆ {2, . . . , 2n} and |J | = n− 1 can be written in terms of these monomials as

XJ = −X1

∑
j∈J

XJ−{j}.

On the other hand the degree n−1 part of B− is described inside B by the relations

en−1(Xi1 , . . . , Xin) = 0
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with 2 ≤ j1 < . . . < jn ≤ 2n. This is a system of
(
2n−1

n

)
linearly independent

equations in
(
2n−1
n−1

)
variables. Therefore the monomials XJ vanish in B− when

J ⊆ {2, . . . , 2n} is a subset of n− 1 elements.
We consider the Zariski-closed subsets Z± ⊂ B±

1
∼= A2n of (n − 1)-nilpotent

elements, i.e., Z± = {a ∈ B±
1 | an−1 = 0}. Write a =

∑2n
1=1 aiXi as a linear

combination of the basis elements. We see that an−1 is∑
p1+...+p2n=n−1

(
n− 1

p1 . . . p2n

)
ap1

1 . . . ap2n

2n Xp1

1 . . .Xp2n

2n =
∑

J⊆{1,...,2n}
|J|=n−1

(n− 1)! aJXJ

because all squares vanish in B. In the ring B− the above expression simplifies to

(n− 1)!
∑

K⊆{2,...,2n}
|K|=n−2

a1aKX1XK ,

from which we see that Z− is cut out by equations a1ak2
. . . akn−2

. The closed
subset {a1 = 0} is an irreducible component of Z− of dimension 2n − 1. When
working in B+ we obtain for a ∈ Z+ the equation

0 = (n− 1)!
∑

K⊆{2,...,2n}
|K|=n−2

aK

(
a1 −

∑
j∈{2,...,2n}−K

aj

)
X1XK .

Let U ⊆ B+
1 be the open subset defined by aL = 0 for all L ⊂ {2, . . . , 2n} with

|L| = 2n − 2. The complement of U is a union of hyperplanes of codimension 2.
The intersection Z+ ∩ U is defined by the equations

a1 =

n+1∑
ν=1

ajν

where 2 ≤ j1 < . . . < jn+1 ≤ 2n. These are
(

2n
n+1

)
linear equations. The codimen-

sion of Z+∩U inside U is hence at least 2. The choice of U then assures that there
can be no irreducible component of Z+ which is of codimension 1 inside B+

1 .
We have shown that Z+ and Z− can’t be isomorphic as varieties, which shows

that the rings B+ and B− are non-isomorphic. This contradicts our assumption
that there is an isomorphism A+ → A−. The theorem is proved. �

Combining this result with the algebraicity of cohomology (see Remark 4), we
conclude:

Corollary 18. The rational cohomology rings of the small desingularizations Mθ+

and Mθ−
of Mθ0−sst are not isomorphic if n ≥ 3.
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