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SPECTRAL GAP OF SCL IN FREE PRODUCTS

LVZHOU CHEN

(Communicated by David Futer)

Abstract. Let G = ∗λGλ be a free product of torsion-free groups, and let
g ∈ [G,G] be any element not conjugate into a Gλ. Then sclG(g) ≥ 1/2. This
generalizes and gives a new proof of a theorem of Duncan and Howie (1991).

1. Introduction

For any group G, let [G,G] denote its commutator subgroup. For any g ∈ [G,G],
the commutator length cl(g) is the minimal number n such that

g = [a1, b1][a2, b2] · · · [an, bn]
for some ai, bi ∈ G, and the stable commutator length scl(g) is the limit

lim
n→∞

cl(gn)

n
.

The spectrum of scl is the set of values of scl(g) as g runs over elements of [G,G].

1.1. Main results. In this paper, our main result is the following.

Theorem A. Let G = ∗λGλ be a free product of torsion-free groups, and suppose
g ∈ [G,G] is not conjugate into any Gλ. Then

sclG(g) ≥ 1/2.

This statement must be modified when the factors have torsions. For instance,
we have a lower bound 1/2− 1/N if every nontrivial element in each factor group
has order at least N ≥ 2; for details, see Theorem 3.1. The same statement and
proof are still valid if the assumption g ∈ [G,G] is weakened to gn ∈ [G,G] for
some n ≥ 1 since we use the geometric interpretation (see Section 2).

A special case is when each Gλ = Z. In this case G is free, and no g ∈ [G,G]\{id}
is conjugate into a factor. Thus we obtain a new proof of the following result.

Corollary B. If F is free, and g ∈ [F, F ]\{id}, then
scl(g) ≥ 1/2.

Duncan–Howie [10] proved Theorem A when Gλ are locally indicable. Our proof
is new even in that case.

A group G with the property that either scl(g) = 0 or scl(g) ≥ C for some C =
C(G) > 0 for all g ∈ [G,G] is said to have a spectral gap C for scl. Residually free
groups have spectral gap 1/2 ([4, Corollary 4.113], using Duncan–Howie’s result);
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δ-hyperbolic groups have a spectral gap that can be estimated by the number
of generators and δ (Calegari–Fujiwara [5]); finite index subgroups of mapping
class groups also have a spectral gap (Bestvina–Bromberg–Fujiwara [1]); Baumslag–
Solitar groups have a spectral gap 1/12 (Clay–Forester–Louwsma [8]); right angled
Artin groups have a spectral gap 1/24 (Fernós–Forester–Tao [11]).

Our results imply that ∗Gi has a spectral gap min{C, 1/2−1/N} (N ≥ 3) if allGi

have spectral gap C and contain no k-torsion for k < N . Without the assumption
on torsions, the spectral gap min{C, 1/12} has been obtained in [8, Theorem 6.9].

In fact we give two logically independent proofs of Corollary B.
Ivanov–Klyachko [12] recently independently obtained Theorem A together with

other estimates related to Theorem 3.1 in terms of commutator length. Their argu-
ment uses a different language (diagrams) but the idea behind is similar, especially
in the case of free groups. Corollary 3.7 provides the connection.

1.2. Contents of paper. Section 2 introduces the geometric language of fat-
graphs, used to study scl in free groups. We give a new proof of Corollary B
and discuss potential generalizations to integral chains.

Section 3 introduces some techniques to study surface maps into a wedge of
spaces. We use these techniques to prove Theorem 3.1 which allows the factors to
have torsion, then we deduce Theorem A.

2. Geometric definition of scl

Our arguments are geometric and depend on an interpretation of scl in terms of
maps of surfaces.

Let G be a group. Let X be a K(G, 1). Each conjugacy class g ∈ [G,G]
corresponds to a free homotopy class of loop γ : S1 → X.

An admissible surface for g is a compact, oriented surface R without disk or
sphere components, together with a free homotopy class of map f : R → X for
which the following diagram commutes:

∂R S1

R X

∂f

γ

f

and ∂f is a positively oriented (possibly disconnected) covering (of degree n(R)).
These are sometimes called monotone admissible surfaces ([4, Definition 2.12]).

Lemma 2.1 ([4, Proposition 2.10 and 2.13]).

scl(g) = inf
−χ(R)

2n(R)

over all admissible surfaces for g.

This also defines scl(g) for g ∈ G with gn ∈ [G,G] for some n ≥ 1.
The following corollary is well known to people studying scl; we include it for

readers interested in commutator length.

Corollary 2.2. Let gi be conjugates of g. Unless m = 1 and gn1
1 = id, we have

cl(gn1
1 · · · gnm

m ) ≥ scl(g)

∣∣∣∣∣
m∑
i=1

ni

∣∣∣∣∣− m

2
+ 1.
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Figure 1. Fattening and Decoration

Proof. If gn1
1 · · · gnm

m = id, then the inequality does not hold only whenm = 1. From
now on, assume gn1

1 · · · gnm
m �= id and can be written as a product of k commutators.

Then we obtain a surface R of genus k with m boundary components and a map
f : R → X such that the boundary components wrap ni times respectively around
a loop γ representing the conjugacy class g. Then −χ(R) = 2k +m − 2 and R is
not a disk by assumption. If all ni have the same sign, the inequality follows from
Lemma 2.1; for the general case, apply Proposition 2.10 in [4] instead. �

If G is free, we can take X to be a wedge of circles. In this case, any admissible S
can be compressed (reducing −χ(S) without changing n(R)) until it is represented
by a fatgraph (see [9]). See [6] or [13] for an introduction to fatgraphs.

Informally, a fatgraph is a graph Y with a cyclic ordering of edges at each vertex,
which lets Y embed canonically as the spine of a compact oriented surface S(Y )
(the fattening) which deformation retracts to Y . ∂S(Y ) has an induced simplicial
structure.

If Y comes with a simplicial map f : Y → X, then we get a surface map f̄ :
S(Y ) → X, which is simplicial on ∂S(Y ), by pre-composing with the deformation
retraction S(Y ) → Y . We decorate the oriented edges of ∂S(Y ) by generators of
F to indicate where they are mapped in X by f̄ . See Figure 1 for an example.

Any cyclically reduced g in a free group F is represented by a simplicial immer-
sion φ : C|g| → X, where |g| is the word length, and C|g| is the simplicial oriented S1

with |g| vertices. For an admissible fatgraph Y (with a simplicial map f : Y → X),
the oriented covering map ∂f̄ : ∂S(Y ) → C|g| can be taken to be simplicial. Every
admissible surface (up to compression and homotopy) can be put in this form.

Now we prove the spectral gap 1/2 for free groups.

Corollary B. If F is free, and g ∈ [F, F ]\{id}, then

scl(g) ≥ 1/2.

Proof. Take any fatgraph Y with fattening S = S(Y ) admissible of degree n for g.
Label the vertices of C|g| cyclically as 1, 2, . . . , |g|. Pull back the labels to ∂S via

the covering map ∂f̄ ; then each edge on ∂S also gets labeled as (i, i+1) for i < |g|
or (|g|, 1).
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Two (distinct) edges of ∂S are paired if they are mapped to the same edge of Y
under the deformation retraction. Two (distinct) vertices of ∂S are paired if they
are end points of a pair of paired edges that correspond to some edge e in Y and
these two vertices correspond to the same end point of e. In Figure 1, v4 and v5
are paired vertices; v1,v2 and v3 are mutually paired; v6 is paired with v7 and v9
but not with v8.

Claim 2.3. Paired vertices have distinct labels.

Proof. Suppose not. Then we will have two paired edges mapped to two consecutive
edges of C|g| under ∂f̄ . But paired edges are decorated by inverse letters, so the
cyclic word decorating ∂S is not cyclically reduced, contrary to the assumption. �

Now construct a directed graph G (possibly with multiedge) as follows. The
vertex set is {1, 2, . . . , |g|}. Whenever we have a pair of paired edges on ∂S labeled
as (i, i + 1) and (j, j + 1), respectively, add a directed edge from i + 1 to j and
another from j + 1 to i. We say a directed edge from i to j is descending if i > j.
See Figure 2 for an example. The graph G resembles the turn graph introduced by
Brady–Clay–Forester [2] to compute scl in free groups.

Figure 2. The pull back label on a fatgraph that is admissible
for g = abaBaBAAAb ∈ F2, and the corresponding graph G with
descending edges thickened.

For each vertex v of Y , let d(v) denote the valence.

Claim 2.4. ∑
d(v) = n|g|, where the sum is over all vertices of Y.

Proof. For each vertex v of Y with valence d(v), there are exactly d(v) vertices on
∂S that deformation retract to v. Thus

∑
d(v) is the number of vertices of ∂S,

which equals the number of edges on ∂S, which is n|g|. �
Claim 2.5.

#(vertices in Y ) ≤ n

(
1

2
|g| − 1

)
.

Proof. In the proof above, we see that there are exactly d(v) vertices on ∂S that
deformation retract to v. These vertices contribute to exactly d(v) directed edges
in G which form a directed cycle. This gives a decomposition of G into cycles as
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v ranges over all vertices of Y . Note that each directed cycle in G must contain a
descending edge since there is no self loop according to Claim 2.3. Therefore, the
number of vertices in Y is no more than the number of descending edges in G.

On the other hand, for each pair of paired edges on ∂S labeled as (i, i+ 1) and
(j, j + 1), respectively, if neither of i, j is |g|, then exactly one of the two directed
edges in G contributed by this pair is descending; if i = |g| or j = |g|, then neither
of the two directed edges is descending. Thus the number of descending edges in
G is n(|g|/2− 1). �

Combining the results above, we have

−χ(S) = −χ(Y ) =
∑ d(v)− 2

2
=

1

2

∑
d(v)−#(vertices of Y )

≥ 1

2
n|g| − n

(
1

2
|g| − 1

)
= n

for all admissible fatgraphs, which implies scl(g) ≥ 1/2. �

scl is extended to integral chains (formal sums of elements) in [4].

Conjecture 2.6 (Calegari).

scl(c) ≥ 1

2
for any integral chain c in a free group, unless an admissible surface of c is annuli
(in which case scl(c) = 0).

Remark 2.7. Using the argument above, any ordering of the vertices on C|g| gives a
lower bound on scl(g), which also works for chains. However, few orderings provide
the correct lower bound 1/2, and it seems difficult to show that such good orderings
exist for general chains. Computer experiments give evidence for Conjecture 2.6.

Remark 2.8. Duncan–Howie’s proof depends on the existence of a left-ordering on
torsion-free one-relator quotients of the free groups. There is no analogy of their
argument for integral chains. Thus one motivation of our work is to find a new
proof of their result which does not depend on orderability.

Remark 2.9. Spectral gap 1/2 is often useful to certify extremal surfaces (those ad-
missible surfaces realizing the infimum in the geometric interpretation). For exam-
ple, Corollary B implies that the once-punctured torus bounding [x, y] is extremal
when x, y ∈ F do not commute. Similarly, the special case c = x−1 + y−1 + xy in
Conjecture 2.6 is asking whether the thrice-punctured sphere bounding c is extremal
when x, y do not commute, which is still open.

3. Free product case

In this section we prove Theorem A. This will follow by induction and a finiteness
argument from the following theorem.

Theorem 3.1. Let G = A∗B and g = a1b1 · · · aLbL with ai ∈ A\{id}, bi ∈ B\{id},
and L ≥ 1 such that g ∈ [G,G]. Let N ≥ 2 be the minimal order of ai and bi; then

sclG(g) ≥ 1/2− 1/N.



3148 LVZHOU CHEN

Figure 3. RA and RB with inessential arcs thickened and corners
represented by dots.

The formalism of fatgraphs is inadequate when factors are not free; thus we
introduce a new formalism following [3].

If G = A ∗ B, then we can build a K(G, 1) by taking X := K(A, 1) ∨ K(B, 1)
to be a wedge. Then an admissible surface R → X decomposes into subsurfaces
RA → K(A, 1) and RB → K(B, 1). RA and RB are surfaces with corners, each of
which contributes 1/4 to −χ.

Calegari [3] shows how to compute scl in certain free products by a pair of linear
programming problems, one for each of A and B.

When A,B are abelian (the case Calegari considers), the contribution of RA

to scl comes from a linear term, together with a nonlinear contribution from disk
components, i.e., components of RA which are homeomorphic to D2.

Example 3.2. Let R be the fatgraph admissible for g = abaBaBA3b ∈ Z ∗ Z in
Figure 2. It decomposes into RA and RB as in Figure 3. RA contributes

1/4#corners−#disks = 2− 1 = 1

to −χ(R), and similarly the contribution of RB is 0. In general, to minimize
−χ(R)/2n is to maximize the number of disk components—a nonlinear problem.

For arbitrary A,B we obtain a lower bound on scl by ignoring the (positive)
contribution to −χ of nondisk components of RA and RB . Equality holds (by a
covering argument; see [3] or [7]) when scl vanishes on both A and B. Formally, fix
G and g as in Theorem 3.1.

Definition 3.3. Let W be a vector space formally spanned by the set of ordered
pairs (i, j), 1 ≤ i, j ≤ L. Let

V :=

⎧⎨
⎩

∑
1≤i,j≤L

xij(i, j) such that xij ≥ 0,
∑
i

xij = 1,
∑
j

xij = 1

⎫⎬
⎭ ⊂ W,

DA :=

⎧⎨
⎩

k∑
j=1

(ij , ij+1) such that ik+1 = i1,

k∏
j=1

aij = 1 ∈ A, k > 0

⎫⎬
⎭ ⊂ W.

Each element in DA is called a disk vector in A. For any v ∈ V , define

κA(v) := sup
{∑

ti

∣∣∣ v =
∑

tidi +
∑

x′
ij(i, j), ti ≥ 0, di ∈ DA, x

′
ij ≥ 0

}
.
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Define DB and κB similarly. Finally define φ : V → V to be the affine map given
by φ(i, j) = (j − 1, i) (replace j − 1 by L if j = 1).

Up to compression of R, the boundary ∂RA alternates between arcs mapped
to one of ai and inessential arcs (mapped to the wedge point). Encode RA as
vA =

∑
xij(i, j) ∈ V , where xij is the number, divided by n(R), of inessential

arcs on ∂RA that go from ai to aj . Disk components contribute to disk vectors.
Such an encoding cannot reconstruct RA but is enough to bound from below the
contribution of RA to −χ(R), and κA(vA) is the (normalized) maximal number of
disk components RA can have.

Note that RA and RB can be glued up along inessential arcs such that ai should
be followed by bi and bj−1 should be followed by aj . Thus the vectors vA and vB
corresponding to RA and RB satisfy vB = φ(vA). Based on these, sclG can be
estimated using the following lemma.

Lemma 3.4. Under the notation above,

2 · sclG(g) ≥ L− sup
vA∈V

{κA(vA) + κB(φ(vA))} .

Equality holds if sclA and sclB are identically zero.

This is Corollary 4.17 in [7] in the case G1 = A, G2 = B, and z = g since
(vA, vB) ∈ Yl means vB = φ(vA) in our notation and we have |vA| = |vB | = L.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.4, it suffices to show

κA(vA) + κB(φ(vA)) ≤ L− 1 + 2/N

for any vA =
∑

xij(i, j) ∈ V .

Claim 3.5. For all v =
∑

xij(i, j) ∈ V we have

κA(v) ≤
1

N

∑
i≥j

xij +

(
1− 1

N

)∑
i<j

xij , and similarly for κB(v).

Proof. Suppose v =
∑

tidi +
∑

x′
ij(i, j) with ti ≥ 0, di ∈ DA, and x′

ij ≥ 0. It
suffices to show that each di contributes at least 1 to the right hand side of the
inequality.

For any disk vector d =
∑k

j=1(ij , ij+1), if all ij are equal, then k ≥ N , and thus

the contribution of d to the right hand side is k/N ≥ 1.
Suppose there are at least two distinct ij ’s. Then there exist j1 and j2 such that

ij1 > ij1+1 and ij2 < ij2+1. Thus the contribution of d to the right hand side is at
least 1/N + (1− 1/N) = 1. �

Geometrically, each v ∈ V can be thought of as an L × L doubly stochastic
matrix. Since each row sums to 1, the estimate in the claim above is equivalent to
saying that κA(v) − L/N and κB(v) − L/N are at most (1 − 2/N) times the sum
of entries in the strictly upper triangular region U . The pull back φ−1(U) and U
together form L − 1 columns (Figure 4 illustrates the case L = 5), in which the
entries sum to L− 1. Combining these, we get the desired inequality.
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Figure 4. Matrix illustration

Formally, by the claim above, for any vA =
∑

xij(i, j) ∈ V , we have

κA(vA) + κB(φ(vA)) ≤ 2L

N
+

(
1− 2

N

)∑
i<j

xij +

(
1− 2

N

) ∑
1≤j−1<i

xij

=
2L

N
+

(
1− 2

N

)⎡
⎣∑

i<j

xij +
∑

2≤j≤i

xij

⎤
⎦

=
2L

N
+

(
1− 2

N

) ∑
2≤j≤L

xij

=
2L

N
+

(
1− 2

N

)
(L− 1)

= L− 1 +
2

N
,

as desired. �

Remark 3.6. The estimate in Theorem 3.1 is sharp, since we have ([7, Proposition
5.6])

sclG1∗G2
([a, b]) =

1

2
− 1

min(na, nb)
,

where a ∈ G1\{id}, b ∈ G2\{id} and na, nb are the orders of a, b, respectively.

Now we apply Theorem 3.1 with N = +∞ to prove the following.

Theorem A. Let G = ∗λGλ be a free product of torsion-free groups, and suppose
g ∈ [G,G] is not conjugate into any Gλ, then

sclG(g) ≥ 1/2.

Proof. First notice that for each g ∈ [G,G], there are finitely many λ1, λ2, . . . , λn

such that g ∈ [H,H], where H = ∗n
i=1Gλi

≤ G. Moreover, we have sclH(g) =
sclG(g) since H is a retract of G and scl is monotone under homomorphism. Thus
it suffices to show sclH(g) ≥ 1/2.

Now we induct on n. The case n = 2 directly follows from Theorem 3.1. Now

suppose n > 2. Then G is the free product of two torsion-free groups ∗n−1
i=1 Gλi

and Gλn
. If g is not conjugate into either of them, then the result follows from

Theorem 3.1. Otherwise, by assumption, g is conjugate into ∗n−1
i=1 Gλi

but not any
Gλi

. Then the result follows from the inductive assumption. �
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Finally, Corollary 2.2 and Theorem 3.1 together imply the following result about
commutator length, similar to the results obtained by Ivanov–Klyachko [12].

Corollary 3.7. Let G = A ∗ B and g = a1b1 · · · aLbL with ai ∈ A\{id}, bi ∈
B\{id}, and L ≥ 1 such that g ∈ [G,G]. Let N ≥ 2 be the minimal order of ai and
bi, and let gi be conjugates of g. Then

2 · cl(gn1
1 . . . gnm

m )− 2 ≥
m∑
i=1

(ni − 1)−
[
2

N

m∑
i=1

ni

]
,

where [x] denotes the largest integer no greater than x.
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