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K2 OF CERTAIN FAMILIES OF PLANE QUARTIC CURVES
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(Communicated by Lev Borisov)

Abstract. We construct three elements in the kernel of the tame symbol on
families of quartic curves. We show that these elements are integral under
certain conditions on the parameters. Moreover, we prove that these elements
are in general linearly independent by calculating the limit of the regulator.

1. Introduction

In his pioneering work [2], Beilinson made very far-reaching conjectures on the
relation between special values of L-functions and regulators of certain K-groups
of smooth projective varieties defined over number fields. The conjecture for K2 of
curves is originally due to Bloch [5].

First we briefly review some notation and definitions concerning Beilinson’s con-
jecture on K2 of curves. For a smooth projective geometrically irreducible curve C
defined over Q (similar definitions apply for curves over number fields), the local-
ization sequence of K-theory gives us the exact sequence⊕

x∈C(1)

K2(Q(x)) −→ K2C −→ K2(Q(C))
T−→

⊕
x∈C(1)

Q(x)∗,

where C(1) denotes the set of closed (codimension 1) points of C, and the x-
component of the map T is the tame symbol at x, defined on generators by

(1.1) Tx : {a, b} �→ (−1)ordx(a) ordx(b)
aordx(b)

bordx(a)
(x).

The tame K2 group KT
2 (C) of C is defined by ker(T ), which is isomorphic to K2(C)

up to torsion since K2 of a number field is torsion. For α in K2(Q(C)), we have
the product formula [1, Theorem 8.2],

(1.2)
∏

x∈C(1)

Nmk(x)/k(Tx(α)) = 1.

Now we give the definition of the groupKT
2 (C)int, which is a subgroup ofKT

2 (C).
It plays a key role in Beilinson’s conjecture on K2 of curves. Fix a regular, proper
model C/Z of C/Q. We define

KT
2 (C)int = ker

(
KT

2 (C)
TC−→

⊕
p,D⊂Cp

Fp(D)∗
)
,
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where the sum runs through all rational primes and the irreducible components of
Cp, and Fp(D) is the residue field at D. The component of TC for D is given by the
tame symbol corresponding to D similar to (1.1),

{a, b} �→ (−1)vD(a)vD(b) a
vD(b)

bvD(a)
(D) ,

where vD is the valuation on Q(C) corresponding to D. The group KT
2 (C)int is

well-defined since it is independent of the choice of C (see Proposition 4.1 of [11]).
We call it the integral tame K2 group of C and call its elements integral. Note that
KT

2 (C)int agrees with K2(C) up to torsion by the localization sequence for C.
Beilinson’s conjecture relates K-theory of varieties to special values of their L-

functions via the so-called regulator. There is a well-defined pairing between KT
2 (C)

and H1(C(C),Z):

(1.3) 〈 · , · 〉 : H1(C(C);Z)×KT
2 (C)/ torsion → R.

Let H1(C(C),Z)− be the part of H1(C(C),Z) which is anti-invariant under the
action of complex conjugation on C(C). Suppose that C has genus g; then it is a
free abelian group of rank g. We restrict the pairing to H1(C(C),Z)−, giving us
the regulator pairing

〈 · , · 〉 : H1(X;Z)− ×KT
2 (C)/ torsion → R

(γ, α) �→ 1

2π

∫
γ

η(α) ,
(1.4)

with η(α) obtained by writing α as a sum of symbols {a, b}, and mapping {a, b} to

(1.5) η(a, b) = log |a|d arg(b)− log |b|d arg(a) ,
and γ is chosen such that η(α) is defined. If γ1, . . . , γg form a basis of H1(C(C);Z)−

and M1, . . . ,Mg are in KT
2 (C), then the regulator R(M1, . . . ,Mg) is defined by

(1.6) R = | det(〈γi,Mj〉)|.
Beilinson’s conjecture expects KT

2 (C)int ⊗Z Q to have Q-dimension g and R �= 0
if M1, . . . ,Mg form a basis of it. Moreover, it relates R to the value of L(C, s) at
s = 2 (see, e.g., [8, Conjecture 3.11]).

For any elliptic curve E over Q, there is always a non-torsion element inKT
2 (E)int

such that the regulator of the element and L(E, 2) have the relation predicted by
Beilinson’s conjecture. This was proved by Bloch [5] for E with complex multiplica-
tion and follows from Belinson’s work on modular curves [3] and the modularity of
E due to Wiles et al. for the non-CM case. On the other hand, not much is known
about KT

2 (C)int for curves of genus greater than 1 except Belinson’s work on mod-
ular curves in [3], but see also [8,9,11,13,14] for some ad hoc constructions. Kühn
and Müller in [10] considered the problem of constructing curves with elements in
the tame K2 group from their special intersection properties with other curves. In
particular, they constructed a family of quartic curves with three elements in the
integral tame K2 group.

In this article, we study the K2 group of certain families of quartic curves over
Q. In Section 2, following the ideas in [10], we construct a family of quartic curves
with three elements in KT

2 (C). The advantage of our construction is that the
configuration is more symmetric, which makes the integrality of the elements almost
automatic under certain conditions on the parameters. In Section 3, we prove that
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the elements are in general linearly independent by calculating the limit of the
regulator. Hence these elements generate KT

2 (C)int⊗ZQ provided that one accepts
Beilinson’s conjecture. By applying the same method, we can also show the linear
independence of the elements on the quartic curves constructed in [10].

2. Elements in K2 of a family of plane quartic curves

Suppose that C is a plane quartic curve. Since smooth quartic curves have genus
3, we want to construct quartic curves with three linearly independent elements in
KT

2 (C)int as predicted by Beilinson’s conjecture. But first we need three elements
in KT

2 (C). By Proposition 4.3 of [8], we only need to construct curves with four
points whose pairwise differences are torsion divisors. To construct points with
such property, we use the following simple observation.

Lemma 2.1. Let P1, P2, P3, P4 be four distinct flex points on a smooth quartic
curve C such that the tangent line at Pi passes through Pi+1, i ∈ Z/4Z. Then the
pairwise differences of Pi, i = 1, 2, 3, 4, are torsion divisors.

Proof. Suppose the tangent line TPi
at Pi is defined by the equation LPi

= 0. Since
the curve is quartic and Pi are flex points, TPi

intersect the curve with multiplicity

3 at Pi and with multiplicity 1 at Pi+1. Let f1 =
L7

P1
L3

P3

L9
P2

LP4

. Then f1 is a rational

function on C and

div(f1) = 7((3P1) + (P2)) + 3((3P3) + (P4))− 9((3P2) + (P3))− ((3P4) + (P1))

= 20(P1)− 20(P2).

Similarly, let f2 =
L7

P2
L3

P4

L9
P3

LL1

, f3 =
L7

P3
L3

P1

L9
P4

LP2

, and f4 =
L7

P4
L3

P2

L9
P1

LP3

. Then

div(fi) = 20(Pi)− 20(Pi+1), i ∈ Z/4Z.

Hence (Pi)−(Pi+1), i ∈ Z/4Z, are torsion divisors. Since any difference of two points
can be expressed as a sum of differences of Pi and Pi+1, the pairwise differences of
these four points are torsion divisors. �

Now we want to find quartic curves which satisfy the conditions of Lemma 2.1.
Since C is quartic, the projective equation of C can be written as

(2.2)
∑

i+j+k=4,i,j,k�0

ai,j,kX
iY jZk = 0.

The equation has 14 degrees of freedom up to scale. Since any four points in P2 in
the general position can be transformed to the four special points [1, 0, 0], [0, 1, 0],
[0, 0, 1], [1, 1, 1] by an automorphism of P2, without loss of generality, we can assume
Pi, i ∈ Z/4Z, to be these four points. This imposes 4 conditions on the equation
of the curve. To fulfill the requirements of Lemma 2.1, Pi must be flex points,
which imposes 1 condition at each Pi, and the tangent line at Pi passes through
Pi+1, which imposes another condition. So in total we have 12 conditions on the
equation of the curve. Subtracting these 12 conditions from 14 degrees of freedom,
we should have a family of quartic curves with 2 parameters. This is indeed what
we get in the following lemma.

Lemma 2.3. Suppose an irreducible quartic curve C passes through Pi, i ∈ Z/4Z,
and the Pi are flex points with tangent lines passing through Pi+1. Then C forms
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a two-parameter family of curves Ca,b defined by the following projective equation
with parameters a and b:
(2.4)
(2+b−a)XY 3+X3Z−(b+3)X2Y Z+aXY 2Z+bX2Z2−bXY Z2+XZ3−Y Z3 = 0,

where 2 + b− a �= 0.

Proof. Basically what we do is to write the conditions and solve the other coeffi-
cients with a1,2,1 and a2,0,2.

Since C passes through P1, P2, P3, we have a4,0,0 = a0,4,0 = a0,0,4 = 0. The
tangent line at P1 passes through P2, so it is Z = 0. Substituting it into (2.2),
we get X(a3,1,0X

2Y + a2,2,0XY 2 + a1,3,0Y
3) = 0. Since Z = 0 intersects C with

multiplicity 3 at P1, we must have a3,1,0 = a2,2,0 = 0. Similarly, at P2 we have
a0,3,1 = a0,2,2 = 0, and at P3 we have a1,0,3 + a0,1,3 = a2,0,2 + a1,1,2 = 0. Now (2.2)
can be simplified to

a1,3,0XY 3 + a3,0,1X
3Z + a2,1,1X

2Y Z + a1,2,1XY 2Z + a2,0,2X
2Z2(2.5)

−a2,0,2XY Z2 + a1,0,3XZ3 − a1,0,3Y Z3 = 0.

The tangent line at P4 is Y = Z. Substituting Ỹ = Y −X, Z̃ = Z−X into (2.5), the

new curve with coordinate (X, Ỹ , Z̃) passes through [1, 0, 0] at which the tangent

line is Ỹ = Z̃. Substituting Ỹ = Z̃,X = 1 into the equation of the curve, it must
have a root of multiplicity 3 at Ỹ = 0, which implies that

a1,3,0 + a3,0,1 + a2,1,1 + a1,2,1 = 0,

3a1,3,0 + a3,0,1 + 2a2,1,1 + 3a1,2,1 − a2,0,2 − a1,0,3 = 0,

3a1,3,0 + a2,1,1 + 3a1,2,1 − 2a2,0,2 − 3a1,0,3 = 0.

Solving these linear equations, we have

a1,3,0 = 2a1,0,3 + a2,0,2 − a1,2,1,

a3,0,1 = a1,0,3,

a2,1,1 = −a2,0,2 − 3a1,0,3.

Plugging this into equation (2.5), we have

(2a1,0,3 + a2,0,2 − a1,2,1)XY 3 + a1,0,3X
3Z − (a2,0,2 + 3a1,0,3)X

2Y Z + a1,2,1XY 2Z

+a2,0,2X
2Z2 − a2,0,2XY Z2 + a1,0,3XZ3 − a1,0,3Y Z3 = 0.

Note that if a1,0,3 = 0, the curve splits into two lines and a conic. So up to scale we
can assume a1,0,3 = 1. Substituting a1,2,1 = a and a2,0,2 = b, we get (2.4). Finally,
we have 2 + b− a �= 0 since otherwise C is reducible. �

Denote x = X
Z and y = Y

Z . The elements of the function field of C are rational

functions of x and y. Now can we write three elements in KT
2 (Ca,b).

Proposition 2.6. Let Ca,b be as in Lemma 2.3. Then we have three elements
M1,M2,M3 in KT

2 (Ca,b):{ f1
(a− b− 2)3

, (a−b−2)f2

}
,
{
(a−b−2)3f2,

f3
a− b− 2

}
,
{ f3
(a− b− 2)3

, (a−b−2)f4

}
,

where

f1 =
(x− y)3

x9(y − 1)
, f2 =

x7(y − 1)3

(x− y)9
, f3 =

(x− y)7

(y − 1)9x
, f4 =

(y − 1)7x3

x− y
.
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Proof. By the proof of Lemma 2.1, div(fi) = 20(Pi) − 20(Pi+1), i ∈ Z/4Z. To
calculate the tame symbols, we only need to know the values of fi, i ∈ Z/4Z, at
suitable points.

At P3 = [0, 0, 1], the affine equation of the curve is

(2 + b− a)xy3 + x3 − (b+ 3)x2y + axy2 + bx2 − bxy + x− y = 0.

Since ordP3
(x − y) = 3, by substituting y = (2 + b − a)xy3 + x3 − (b + 3)x2y +

axy2 + bx2 − bxy+ x into the equation, we get x− y = (2+ b− a)x3 + r(x, y) with
ordP3

(r(x, y)) � 4. Hence x−y
x3 = 2 + b− a at P3, f1(P3) = (a− b− 2)3.

Similarly we have

f2(P1) =
1

a− b− 2
,

f2(P4) =
1

(a− b− 2)3
,

f3(P2) = a− b− 2,

f3(P1) = (a− b− 2)3,

f4(P3) =
1

a− b− 2
.

Combined with the product formula (1.2), this implies that the tame symbols of
M1,M2,M3 are trivial. �

Remark 2.7. The elements in Proposition 2.6 are {P1, P2, P3}, {P2, P3, P4},
{P3, P4, P1} under the notation of Proposition 4.3 in [8].

Since a lot of work has been done to find elements in K2 of hyperelliptic curves
[8, 9], we are interested in whether Ca,b is hyperelliptic. If it is not, it means that
we find a new class of curves which is geometrically more general.

Proposition 2.8. The curve Ca,b is non-hyperelliptic if it is smooth.

Proof. If Ca,b is smooth, then the genus of Ca,b is 3. Denote the homogeneous
polynomial defining Ca,b by F . Then the space of holomorphic differentials on Ca,b

is generated by

(2.9)
dx

∂yF (x, y, 1)
,

xdx

∂yF (x, y, 1)
,

ydx

∂yF (x, y, 1)

(see [4], page 99). By a theorem of Max Noether (see [12], [4], page 119), one
can check when a plane algebraic curve is hyperelliptic from the knowledge of its
holomorphic differentials: let

{f1(x, y)dx, . . . , fg(x, y)dx}
denote the set of holomorphic differentials on the curve defined by f(x, y) = 0. Then
the curve is hyperelliptic if and only if there are exactly 2g−1 linearly independent
elements in the quadratic combinations:

{fi(x, y)fj(x, y), i, j = 1, . . . , g}.
Obviously the quadratic combinations of (2.9) have dimension 6, which is greater
than 2g − 1 = 5, so by Noether’s criteria Ca,b is not hyperelliptic. �

If a, b ∈ Z, (2.4) defines an arithmetic surface C′ over Z. Now we want to
understand the integrality of the elements given in Proposition 2.6.
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Theorem 2.10. Suppose a, b ∈ Z and a− b− 2 = ±1. The elements M1,M2,M3

in Proposition 2.6 are integral.

Proof. Assume that a− b− 2 = 1; the case when a− b− 2 = −1 is similar. Using
the notation in Proposition 2.6, the elements can simply be written as

M1 = {f1, f2}, M2 = {f2, f3}, M3 = {f3, f4}.
We follow the proof of Theorem 8.3 in [8]. Let C be a regular proper model of the
arithmetic surface C′ and let Cp be the fiber of C above p. To check the integrality,
we only need to show that for every irreducible component D of Cp, vD(fi) = 0.
Since C is obtained by consecutively blowing up singularities, every such D maps
onto an irreducible component D of the fiber above p of C′ or a singular point. We
only need to examine the functions fi, i ∈ {1, 2, 3, 4}, at D and singular points.

On any irreducible component D of the fiber above p of C′, the functions x, y−1
and x−y are rational functions which do not vanish identically on it since otherwise
Ca,b will have irreducible component defined by X = 0, Y = Z, or X = Y , which is
impossible. So if D maps to an irreducible component, vD(fi) = 0, i ∈ {1, 2, 3, 4}.

From the equation of Ca,b, it is obvious that it is non-singular at Pi, i ∈ Z/4Z,
above any prime p. But from the definition of fi, they only have zeroes or poles
at these four points, so fi �= 0 is defined at any singular point of the fiber above
p of C′. Hence fi �= 0 is constant for any D that maps to a singular point of Ca,b,
vD(fi) = 0, i ∈ {1, 2, 3, 4}.

In sum, on any irreducible component D of Cp, TD(Mj) = 1, j ∈ {1, 2, 3}. �

Combining Proposition 2.6, Proposition 2.8, and Theorem 2.10, we get two one-
parameter families of plane quartics C±

t such that any smooth C±
t with 1/t ∈ Z

has at least 3 elements in KT
2 (C

±
t )int.

Corollary 2.11. Let C±
t be the families of quartic curves defined by

(2.12)
t(∓XY 3+X3Z−3X2Y Z+(2±1)XY 2Z+XZ3−Y Z3)−XZ(−Z+Y )(−Y +X) = 0,

where t ∈ Q, t �= 0. Then:

(1) The curve C±
t is smooth and non-hyperelliptic unless 1/t ∈ {−6,−2, 2} for

C+
t or 1/t ∈ {−2, 1} for C−

t .
(2) Let 1/t1, 1/t2 ∈ Z. Then C±

t1 and C±
t2 are isomorphic if and only if they

have the same sign and t1 = t2.
(3) The following elements are in KT

2 (C
±
t ):

M1 = {±f1,±f2}, M2 = {±f2,±f3}, M3 = {±f3,±f4}.
Moreover, if 1/t ∈ Z, then these elements are integral.

Proof. It is easy to write the conditions such that the curves are singular. Com-
bining the conditions with the equation of the curve and using elimination theory
with the help of Magma [6], we can solve t. This proves (1).

The first Dixmier-Ohno invariants (see [7]) of C+
t and C−

t are 1
72 (t

−3 + 6t−2 −
10t−1 − 36) and 1

72 (t
−3 + 18t−1 + 36) respectively. One can easily check they are

equal for 1/t1, 1/t2 ∈ Z if and only if they are the invariants of the same family and
t1 = t2. This proves (2).

Let a = b+ 2± 1 and b = 1/t in (2.4); we get the equation for C±
t . Hence (3) is

a direct corollary of Proposition 2.6 and Theorem 2.10. �
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3. Linear independence of the elements

In this section, we prove the elements in Corollary 2.11 are linearly independent
as t → 0. The strategy of the proof is to show that the limit of the regulator is
not zero as t → 0. We also show the linear independence of the elements in K2 on
certain quartic curves constructed in [10] by applying the same method.

Let X± be the complex manifolds with points {C±
t (C)}t∈D where D is a small

enough disk. Then the fibers X±
t = C±

t (C) for t �= 0 are Riemann surfaces of genus
3 associated to C±

t (C). To calculate the limit of the regulator, we need a basis of
H1(X

±
t ;Z)− for t → 0. But first we need a lemma.

Lemma 3.1. Let Y be the fibered surface defined by

(3.2) F (x, y, t) = g(x, y)xy − h(x, y)t = 0

with g(x, y), h(x, y) holomorphic at (0, 0). Let γ0 be a clockwise simple loop around
0 in the x-axis in Y0. If g(x, 0) �≡ 0, then y is a holomorphic function of x and t is
in a neighbourhood of γ0. In particular, for x ∈ γ0 and t small enough, this gives a
family of closed loops γt in the fibers Yt.

Proof. We have y, t ≡ 0 on γ0; hence
∂F
∂y = g(x, 0)x on γ0. Since g(x, 0) is holomor-

phic and g(x, 0) �≡ 0, g(x, 0) �= 0 for x �= 0 and |x| small enough. Thus g(x, 0)x �= 0
if γ0 is sufficiently small. Then the holomorphic implicit function theorem implies
the lemma. �

Obviously, around the points P1, P2, and P3, X
± is isomorphic to surfaces defined

by (3.2) for certain holomorphic functions g, h with g(x, 0) �≡ 0. By Lemma 3.1,
this results in three families of closed loops γ1, γ2, γ3 around P1, P2, P3 in which we
omit the parameter t since it will be clear from the context.

Lemma 3.3. With notation and assumptions as above, for |t| → 0:

(1) the three loops γi, i = 1, 2, 3, can be complemented to a basis of H1(X
±
t ;Z);

(2) if t ∈ R, then γi, i = 1, 2, 3, give a basis of H1(X
±
t ;Z)−.

Proof. By the construction, the loop γi is anti-invariant under the complex conju-
gation if t ∈ R, namely in H1(X

±
t ;Z)−, since the equation of the curve has real

coefficients. Hence we only need to prove part (1) as H1(X
±
t ;Z)− has rank 3.

Now we construct another set of loops on X±
t . On X±

0 , we take the loops

P1 → P4 → [1, 1, 0] → P1,

P2 → [0, 1, 1] → P4 → [1, 1, 0] → P2,

P3 → [0, 1, 1] → P4 → P3,

where the → means a line segment between two points such that it does not meet
Pi, i ∈ Z/4Z, [0, 1, 1], and [1, 1, 0] except at the endpoints. The first and third are
triangles and the second is a quadrilateral.

We can make a linear coordinate transformation of x, y onX± such that the loops
in the above paragraph are in the affine part of the variety after the transformation,
and the lines passing through two of these points are not parallel to the y-axis. By
an abuse of notation, we use the same symbol X± for the complex manifold after
the transformation and the same symbol for the points after the transformation.
Consider the projection π : (x, y, t) → (x, t) from the affine part of X± to C ×D.
The points Pi, i ∈ Z/4Z, [0, 1, 1], and [1, 1, 0] split into two ramification points
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under this projection, and we parametrize one of the two ramification points for t
in a suitable circle sector of D.1

We can connect the image of the ramification points under π by line segments
to get loops in C ×D such that they continuously extend the image of the above
loops in X±

0 under π. Choosing small neighbourhoods of the image of Pi, i ∈ Z/4Z,
[0, 1, 1], and [1, 1, 0] under π, we can lift part of the line segments in C×D outside
the neighbourhoods to get paths continuously extending the line segments in the
above loops in X±

0 .2 Shrinking the neighbourhoods if necessary, we can also lift
part of the line segments inside the neighbourhoods such that they do not intersect
γi. Connecting these lifted segments, we construct three families of loops δj =

δj,t, j = 1, 2, 3, in X±
t .

We see that γi and δj , i, j = 1, 2, 3, meet exactly once in X±
0 for i = j and

have intersection number 0 for i �= j, hence also in X±
t by construction. Changing

the orientation of γi if necessary, we can assume that γi ∩ δj equals 1 if i = j
and 0 otherwise. Since different γi do not intersect, the intersection matrix of
{γi}i=1,2,3 ∩ {δj}j=1,2,3 on Xt with t �= 0 and small enough is of the form(

0 I3
−I3 ∗

)
,

which has determinant 1. Hence γi, δj , i, j = 1, 2, 3 give a basis of H1(X
±
t ;Z) for

t → 0. �

Let Y be as defined by (3.2) and g(x, 0), h(x, 0) �≡ 0. Assume that there is a
family of loops γt in the fibers Yt, e.g., the family of loops constructed in Lemma 3.1,
with γ0 a clockwise simple loop around 0 in the x-axis in Y0. Furthermore, let u and
v be holomorphic functions in x and y around (0, 0) that do not vanish at (0, 0).
The following lemma generalizes Lemma 6.4 in [11], which assumes g(0, 0) �= 0 and
h(x, y) ≡ 1.

Lemma 3.4. Let Y , u, v, and the γt be as above and assume γ0 is sufficiently
small. For integers a and b, let ψ(uxa, vyb) be the 1-form log |uxa|d arg(vyb) −
log |vyb|d arg(uxa) on an open part of Y \ Y0, and let F (t) =

∫
γt
ψ(uxa, vyb) for

t �= 0 sufficiently small. Then F (t) = 2πab log |t| + Re(H(t)) for a holomorphic

1Suppose X± is defined by G(x, y, t) = l1l2l3l4 − th(x, y) = 0, where li, i = 1, 2, 3, 4, define
lines which are not parallel to the y-axis and Pi,j is the intersection point of the lines defined by

li, lj , i �= j, on X±
0 . Note that different pairs of lines have different intersection points. Combining

the condition satisfied by the ramification points ∂G
∂y

= 0 with G(x, y, t) = 0, one can show

that y is a holomorphic function of x, t and x is a double-valued function of t around Pi,j . In a
suitable circle sector of D, we can choose a branch of the function x(t) to give a parametrization
of one of the two ramification points. (This is a local problem at each intersection point of

the lines. To fix ideas, it might be helpful to look at a simplified version of this problem. Let
G(x, y, t) = x2 − y2 − t = 0. The point (0, 0, 0) splits into two ramification points (

√
t, 0, t) in the

fiber above t, so we can choose a branch of
√
t in a circle sector to give a parametrization of one

of the two ramification points.)
2Let X± be defined as in the above footnote. Obviously, we have ∂G

∂y
= 0 on X±

0 only at the

intersection points of the lines. By the construction of the loops in X±
0 , the line segments do not

meet the intersection points of the lines except at the endpoints. Hence by the implicit function
theorem y is a function of x, t in a neighbourhood of the line segments outside a neighbourhood
of the endpoints which gives a family of paths continuously extending the line segments in X±

0 .
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function H(t) around t = 0. In particular,

lim
|t|→0

F (t)

log|t| = 2πab .

Proof. The proof proceeds as the proof of Lemma 6.4 in [11]. Write dη({uxa, vyb})=
ω1 ∧ dt+ω2 ∧ dt on a suitable smooth part of Y \ Y0, with 1-forms ω1 and ω2. Ap-
plying Lemma 6.3 of [11] to a parametrization of {γt}t∈D where D is a small disk

containing 0, we have ∂F (t)
∂t = −

∫
γt
ω1.

Now we calculate ω1. On Y \ Y0 we have the identity

gxdx+ gydy

g
+

dx

x
+

dy

y
=

dt

t
+

hxdx+ hydy

h
.

Since g(x, 0), h(x, 0) �≡ 0 and γ0 is sufficiently small, we have g(x, 0), h(x, 0) �= 0 on
γ0; therefore g(x, y), h(x, y) �= 0 on {γt}t∈D for t sufficiently small. Thus we have
1+xh1

x dx+ 1+yh2

y dy = dt
t for h1 and h2 holomorphic in a neighbourhood of {γt}t∈D

and

dx ∧ dy =
xy

1 + yh2

dx

x
∧ dt

t
= xy(1 + yh3)

dx

x
∧ dt

t
,

with h3 = −h2

1+yh2
holomorphic in a neighbourhood of {γt}t∈D. Therefore

d log(uxa) ∧ d log(vyb) = (d log u+ ad log x) ∧ (d log v + bd log y)

= (ab+ xh4 + yh5)
dx

x
∧ dt

t

with h4(x, y) holomorphic around (0, 0) and h5(x, y) holomorphic in a neighbour-
hood of {γt}t∈D.

Denote (ab+ xh4 + yh5)
dx
x by ω. Clearly,

dη(f1, f2) = Im(d log(f1) ∧ d log(f2)) =
1

2i
(ω ∧ dt

t
− ω ∧ dt

t
),

so we have ω1 = 1
2itω. Viewing y around γt as a holomorphic function of x and t,

we have

∂F (t)

∂t
= −

∫
γt

ω1 = −
∫
γt

1

2it
(ab+ xh4 + yh5)

dx

x
=

πab

t
+ h6(t),

where h6(t) is a holomorphic function around t = 0:
∫
γt
(xh4+yh5)

dx
x is holomorphic

in t and vanishes for t = 0 because h4 is holomorphic around (0, 0) and y ≡ 0 on
γ0.

Since ∂ log|t|
∂t = 1

2t , we have ∂(F (t)−2πab log|t|)
∂t = h6 around t = 0. Both F (t) and

log|t| are real-valued; hence also ∂(F (t)−2πab log|t|)
∂t

= h6 around t = 0. Therefore

F (t)− 2πab log|t| = Re(H(t)) with H(t) holomorphic and H ′(t) = 2h6(t). �

Theorem 3.5. Let C be defined by (2.12). For t → 0, t ∈ R, the classes of the
elements M1,M2,M3 in Proposition 2.6 have regulator R = R(t) satisfying

lim
t→0

R(t)

|log|t||3
= 204.

Proof. We can let x = Z
X and y = −Z+Y

X in (2.12) so that X± is isomorphic to a
surface defined by (3.2) with g(x, 0), h(x, 0) �≡ 0. Under this transformation, M1
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becomes {ux7

y , v y3

x } with u(0, 0), v(0, 0) �= 0. Note that the restriction of the 1-

form ψ in Lemma 3.4 on the fiber is just the regulator 1-form as in (1.5). Hence

by Lemma 3.4, we have limt→0

∫
γ1

η(M1)

log|t| = ±40π.

Similarly we can calculate limt→0

∫
γi

η(Mj)

log|t| for 1 � i, j � 3. Then we have the

3× 3 matrix

M =
1

2π
lim
t→0

(〈γi,Mj〉)1�i,j�3

log|t| =

⎛
⎝ ±20 0 ∓60

±40 ∓20 0
±60 ±40 ∓20

⎞
⎠ .

Since γi, i = 1, 2, 3, give a basis of H1(X;Z)− by Lemma 3.3 for t ∈ R, we have

lim
t→0

R(t)

|log|t||3
= |det(M)| = 204.

�
Combining Theorem 3.5 and Corollary 2.11(3), we have the following immediate

corollary.

Corollary 3.6. Let C be defined by (2.12) and let b = 1/t ∈ Z, |b| � 0. There are
three independent elements M1,M2,M3 in KT

2 (C)int.

Remark 3.7. By Proposition 2.8 and Theorem 3.5, we have three independent el-
ements in KT

2 (C)int on two families of non-hyperelliptic curves of genus 3. These
elements give a basis of KT

2 (C)int ⊗Z Q provided that one accepts Beilinson’s con-
jecture. In [11], Rob de Jeu and the first author constructed families of non-
hyperelliptic curves of arbitrary composite genus g with g independent elements in
KT

2 (C)int. It would be interesting to construct families of non-hyperelliptic curves
of arbitrary genus g with g linearly independent elements in KT

2 (C)int.

Now we consider the family of quartic curves in Corollary 5.9 of [10] defined by

(3.8) (y3 + 3/16y2 − 1/4x2y + 1/64y + x4) + by(y − x)(x+ 1/8) = 0,

where b is the parameter. Let C̃ be the projective closure of the curve defined by
(3.8). The elements

M̃1=

{
−16y, 8(x+

1

8
)

}
, M̃2=

{
− 1

4y
,
y − x

y

}
, M̃3=

{
− 1

8(x+ 1
8 )

,−212(y − x)4

y

}

are in KT
2 (C̃)int by Corollary 5.9(iii) of [10]. We have results similar to Theorem 3.5

and Corollary 3.6 for this family of curves.

Theorem 3.9. Let C̃ be as above. For t = 1/b → 0, t ∈ R, the classes of the

elements M̃1, M̃2, M̃3 in Proposition 2.6 have regulator R = R(t) satisfying

lim
t→0

R(t)

|log|t||3
= 4.

Proof. Let O = (0, 0), P ′ = (− 1
8 , 0), Q

′ = (− 1
8 ,−

1
8 ). We can construct loops

γ1, γ2, γ3 close toO,P ′, Q′ respectively and show that they give a basis ofH1(Xt;Z)
−

for t ∈ R as in Lemma 3.3. Applying Lemma 3.4, we have the 3× 3 matrix

M =
1

2π
lim
t→0

(∫
γi
η(M̃j)

)
log|t| =

⎛
⎝ 0 ±1 0

∓1 0 ±1
0 0 ±4

⎞
⎠ .
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Hence we have

lim
t→0

R(t)

|log|t||3
= |det(M)| = 4.

�

Corollary 3.10. Let C̃ be as above and let b ∈ Z, |b| � 0. There are three

independent elements M̃1, M̃2, M̃3 in KT
2 (C̃)int.

Proof. This follows from Theorem 3.9 and Corollary 5.9(iii) of [10]. �
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