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Abstract. In this paper we obtain lower bound estimates of the spectrum of
the Laplace-Beltrami operator on complete submanifolds with bounded mean
curvature, whose ambient space admits a Riemannian submersion over a Rie-
mannian manifold with negative sectional curvature. Our main theorem gen-
eralizes many previously known estimates and applies for both immersions and
submersions.

1. Introduction

Given a compact domain Ω on an m-dimensional Riemannian manifold Mm

let us denote by Spec(Ω) = {λ1(Ω) < λ2(Ω) ≤ ...} the set of eigenvalues of the
Laplace-Beltrami operator −Δ on Ω with Dirichlet boundary condition, repeated
according to its multiplicity. That is, for each λi = λi(Ω), i = 1, 2, . . . there exists
a nontrivial solution to the following problem:{

−Δϕ = λiϕ in Ω,
ϕ = 0 on ∂Ω.

The study of the relations between the eigenvalues and the geometry of the
domain (or the manifold) is a very active topic in differential geometry and has
attracted the attention of many pure and applied mathematicians for a long time.

In this paper, we are interested in obtaining lower bound estimates of the spec-
trum of Laplacian on a class of complete noncompact Riemannian manifolds in
terms of its geometry. In order to state our results we need some notation.

We first recall that on compact domains, the set of eigenvalues is the whole
spectrum of the Laplace-Beltrami operator for the Dirichlet problem. When we
deal with noncompact domains some accumulation points or eigenvalues of infinite
multiplicity may appear, composing the essential spectrum. In any case, the bottom
of the spectrum is given by a limit of the first eigenvalues when we consider an
exhaustion of the domain. More precisely, if M is a Riemannian manifold and
Ω1 ⊂ Ω2 ⊂ · · · is an exhaustion of M the fundamental tone of M is defined by
λ1(M) = limk→∞ λ1(Ωk).

Of course it does not depend on the choice of the exhaustion and coincides with
the first eigenvalue when M is compact. Moreover, λ1(M) can be characterized
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variationally as follows:

λ1(M) = inf

{−
∫
M

ϕΔϕ∫
M

ϕ2
: ∀ϕ ∈ C∞

0 (M)

}
.

In particular, λ1(M) ≥ 0 and it is the bottom of the spectrum of −Δ on M .
Clearly it is much harder to give a lower bound for λ1(M) than an upper bound,

and an important question that is proposed is to find conditions on M which imply
λ1(M) > 0 (see [10, §III.4]).

In this direction, one important contribution was done by McKean [8], who
proved that if M is simply connected and its sectional curvature satisfies KM ≤ −1,
then

λ1(M) ≥ (m− 1)2

4
= λ1(H

m),

where Hm denotes the m-dimensional hyperbolic space of sectional curvature −1.
This estimate was extended by Veeravalli [11] for a quite general class of manifolds.

In the context of submanifolds, Cheung and Leung [5] gave lower bounds esti-
mates when M is complete and isometrically immersed in the hyperbolic space Hn

with bounded mean curvature vector field ‖H‖ ≤ α < m− 1. Namely they proved
that

λ1(M) ≥ (m− 1− α)2

4
.

Later, Bessa and Montenegro (see [3, Corollary 4.4]) generalized Cheung-Leung’s
estimate for the case where Mm is immersed in a complete simply connected Rie-
mannian manifold M

n
with bounded sectional curvature KM ≤ −b2 < 0 and

bounded mean curvature vector H, with ‖H‖ ≤ α < (m− 1)b. In this setting, they
were able to prove that

λ1(M) ≥ [(m− 1)b− α]2

4
.

We point out that Castillon obtained a different lower bound estimate in the same
situation (see Théorème 2.3 in [4]).

A few years ago, Bérard, Castillon, and the first author [1], using a different
approach, obtained a sharp lower bound estimate for λ1(M), when M is a hyper-
surface immersed into Hn × R with constant mean curvature.

Our first result is a dual estimate of Cheung and Leung’s theorem in the context
of Riemannian submersions. We obtain the following

Theorem 1.1. Let π : Mm → Hk be a Riemannian submersion of a complete
Riemannian manifold Mm onto the hyperbolic space. Let us denote by HF the
mean curvature of its fibers and assume that ‖HF‖ ≤ β < k − 1. Then

λ1(M) ≥ (k − 1− β)2

4
.

Notice that this estimate is sharp in the sense that it is archived by the canonical
(totally geodesic) submersion of Hk × Rm−k over Hk.

We have a similar estimate for submersions over a complete Riemannian manifold
with sectional curvature bounded from above by a negative constant, and thus we
also get the dual result of Bessa and Montenegro (it is a direct corollary of Theorem
5.1 below).
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In fact, we found a general lower bound for λ1(M) for complete submanifolds
with bounded mean curvature, whose ambient space admits a Riemannian submer-
sion over a complete Riemannian manifold with bounded negative sectional cur-
vature. In particular, when the base manifold of the submersion is the hyperbolic
space Hk, our main theorem reads as follows.

Theorem 1.2. Let f : Mm → M̃n be an isometric immersion of a complete

Riemannian manifold Mm into a Riemannian manifold M̃n, which admits a Rie-

mannian submersion π : M̃ → Hk. Let H be the mean curvature of M , let αF be

the second fundamental form of the fibers of M̃ , let HF be its mean curvature, and

let A be the O’Neill tensor of M̃ . If

c = inf{k − 1− ‖H‖ − ‖HF‖ − (n−m)
(
2‖A‖∞ + ‖αF‖∞ + 1

)
} > 0,

then

λ1(M) ≥ c2

4
,

where ‖A‖∞ and ‖αF‖∞ denote the uniform norm of these tensors.

Note that we get the Theorem 1.1 when the immersion f is the identity, and
we get (a new proof of) Cheung-Leung’s theorem when the submersion π is the
identity. In fact, in the former case n = m and H = 0 and in the latter case
‖HF‖ = ‖A‖∞ = ‖αF‖∞ = 0.

The paper is organized as follows. In Section 2, we recall some basic properties,
in particular a useful condition on a Riemannian manifold which implies a positive
lower bound estimate for the first eigenvalue. In Sections 3 and 4 we present some
results on Riemannian submersions and on Busemann functions. A main step in our
approach is to use a comparison theorem for the Hessian of Busemann functions.
Finally, in Section 5, we state and prove our general theorem (Theorem 5.1), which
generalizes Theorem 1.2 in two directions: when the base manifold has bounded
negative sectional curvature and when the base manifold is a Riemannian warped-
product of a complete manifold by the real line. We also describe some examples
of submersions where the constant in the main theorem is positive.

2. Preliminaries

In this section we present two well-known results that will be used in the proofs
of our results. The first result gives a general condition to get a positive lower
bound to λ1(M) and its proof follows from integration by parts.

Lemma 2.1. Let Mm be a complete Riemannian manifold that carries a smooth
function F : M → R satisfying

‖grad F‖ ≤ 1 and |ΔF | ≥ c

for some constant c > 0. Then, for any smooth and relatively compact domain
Ω ⊂ M we have

λ1(Ω) ≥
c2

4
,

where λ1(Ω) is the first eigenvalue of the Laplace-Beltrami operator −Δ in Ω, with
Dirichlet boundary condition.
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Now, given an isometric immersion f : Mm → M̃n between Riemannian mani-

folds M and M̃ , let α denote its second fundamental form. Then, the mean curva-
ture vector (not normalized) H of M is defined by H = trα.

The second lemma relates the Laplacian of a function on M̃ and its restriction
to M (see, for example, [6, Lemma 2]).

Lemma 2.2. Let f : Mm → M̃n be an isometric immersion with mean curvature

vector H. Let F̃ : M̃ → R be a smooth function and let F = F̃ |M be its restriction
to M . Then, on M , we have:

Δ̃F̃ = ΔF +

n−m∑
i=1

Hess F̃ (Ni, Ni)−H(F̃ ),

where {N1, . . . , Nn−m} is an orthonormal frame of TM⊥.

3. Riemannian submersions

Let π : M̃n → Bk be a Riemannian submersion of Riemannian manifolds. As
usual in the literature, given a vector field X ∈ X(B) we will denote by X̃ ∈ X(M̃)

its unique horizontal lifting. In general we use a tilde to denote the lifting to M̃ of

geometric objects in the base B. We also denote by X̃ the basics vectors fields in

M̃ , that is, the vectors fields that are π-related to some vector field X ∈ X(B).
For x ∈ B, Fx = π−1(x) denotes the fiber over x. Given p ∈ Fx, the differential

map dπ restricted to the orthogonal subspace TpF⊥
x is an isometry onto TxB. A

vector field on M̃ is called vertical if it is always tangent to fibers, and it is called
horizontal if it is always orthogonal to fibers. Let V denote the vertical distribution
consisting of vertical vectors and H denote the horizontal distribution consisting of

horizontal vectors on M . The corresponding projections from TM̃ to V and H are
denoted by the same symbols.

Let D ⊂ TM̃ denote the smooth distribution on M̃ consisting of vertical vectors.

The orthogonal distribution D⊥ is the smooth rank k distribution on M̃ consisting
of horizontal vectors. The second fundamental form of the fibers is a symmetric
tensor αF : D ×D → D⊥, defined by

αF (v, w) = (∇̃vW )H,

where W is a vertical extension of w. The mean curvature vector of the fiber is
the horizontal vector field HF defined by HF = trαF . In terms of an orthonormal
frame, we have

HF (p) =
n−k∑
i=1

αF (ei, ei) =
n−k∑
i=1

(∇̃eiei)
H,(3.1)

where {e1, . . . , en−k} is a local orthonormal frame to the fiber at p. The fibers are

minimal submanifolds of M̃ when HF ≡ 0, and are totally geodesic when αF ≡ 0.

We need some formulas relating the derivatives of π-related objects in M̃ and
B. Let us start with the divergence of vector fields.

Lemma 3.1. Let X̃ ∈ X(M̃) be a basic vector field, π-related to X ∈ X(B). The

following relation holds between the divergence of X̃ and X at x ∈ B and p ∈ Fx:

divX̃(p) = divX(x)− 〈X̃(p), HF(p)〉.
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Proof. Let X̃1, . . . , X̃k, X̃k+1, . . . , X̃n be a local orthonormal frame of TM̃ , where

X̃1, . . . , X̃k are basic fields. The equality follows from assertions 1 and 3 in [9,
Lemma 1], and formula (3.1) using this frame. �

Given a smooth function F : B → R it is easy to see that the gradient of F̃ is
the horizontal lifting of the gradient of F , i.e.,

grad F̃ = g̃rad F.(3.2)

The Laplace operator in B of a smooth function F : B → R and the Laplace

operator in M̃ of its lifting F̃ = F ◦ π are related by the following formula.

Lemma 3.2. Let F : B → R be a smooth function and set F̃ = F ◦ π. Then, for
all x ∈ B and all p ∈ Fx:

Δ̃F̃ (p) = ΔF (x) + 〈grad F̃ (p), HF (p)〉.

Proof. It follows easily from (3.2) and Lemma 3.1 applied to the vector fields X̃ =

grad F̃ and X = grad F . �

Associated with a Riemannian submersion π : M̃ → B, there are two natural

(1, 2)−tensors T and A on M̃ , introduced by O’Neill in [9], and defined as follows:

for vector fields X, Y tangent to M̃ , the tensor T is defined by

TXY =
(
∇̃XVY V

)H
+
(
∇̃XVY H

)V
.

Note that π : M̃ → B has totally geodesic fibers if and only if T vanishes identically.
The tensor A, known as the integrability tensor, is defined by

AXY =
(
∇̃XHY H

)V
+
(
∇̃XHY V

)H
.

The tensor Ameasures the obstruction to integrability of the horizontal distribution
H. In particular, for any horizontal vector field X and any vertical vector field V ,
we have:

AXV =
(
∇̃XV

)H
.(3.3)

The following lemma gives useful expressions for the Hessian of the lifting F̃ :

M̃ → R of a smooth function F : B → R, when we consider horizontal and vertical
vector fields.

Lemma 3.3. If X and Y are basic, and V and W are vertical vector fields, we

have the following expressions for the Hessian of the lifting F̃ = F ◦ π of F to M̃ :

(a) Hess F̃ (X,Y ) = HessF (π∗X, π∗Y ) ◦ π,
(b) Hess F̃ (V,W ) = −

〈
αF (V,W ), grad F̃

〉
,

(c) Hess F̃ (X,V ) = −
〈
AXV, grad F̃

〉
.

Proof. The first assertion follows from (3.2) and assertion 3 in [9, Lemma 1]. The
second one is a straightforward calculation, and the third assertion follows directly
from (3.3). �
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4. Comparison theorems for Busemann functions

In this section we describe comparison results for the Hessian of Busemann func-
tions on two classes of Riemannian manifolds; both are generalization of the hy-
perbolic space. These classes of manifolds will be used as the base space of the
Riemannian submersions we will consider in our main theorem.

4.1. Busemann functions on manifolds with bounded negative sectional
curvature. Given a > 0, let Hk(−a2) denote the k-dimensional hyperbolic space
with constant sectional curvature −a2. We consider the warped-product model,
that is,

Hk(−a2) = (Rk−1 × R, h),

where

h = e−2asdx2 + ds2.

In this model, the curve γ : R → Hk(−a2), given by γ(s) = (x0, s), is a geodesic for
any x0 ∈ Rk−1, and the function F : Hk(−a2) → R, given by

F (x, s) = s,(4.1)

is its associated Busemann function. By a direct computation we get{
HessF = e−2asdx2,

ΔF = (k − 1)a.

Now we will estimate the Hessian of the Busemann function F defined in a
complete Riemannian manifold Bk with sectional curvature between two negative
constants. In order to obtain the Hessian of F , one takes a point p on a geodesic
sphere of radius r, and lets the center of the sphere go to infinity. In this case,
the sphere converges to a horosphere, and the Hessian of the distance function will
converge to the Hessian of the Busemann function. Thus, a comparison theorem
for the Hessian of a Busemann function follows from the comparison theorem for
the Hessian of the distance function (see [2] for a proof).

Lemma 4.1. Let Bk be a complete Riemannian manifold with sectional curvature
K satisfying −a2 ≤ K ≤ −b2 for some constants a, b > 0. If F : B → R is a
Busemann function, then

b‖X‖2 ≤ HessF (X,X) ≤ a‖X‖2

for any vector X orthogonal to grad F .

4.2. Busemann functions on a class of warped-product. Let (Nk−1, g) be a
complete Riemannian manifold and let w : R → R be a smooth function. Inspired
in the hyperbolic space, we consider the Riemannian warped-product manifold

B = (N × R, h),(4.2)

where

h = e2w(s)g + ds2.

Consider now the Busemann function F : B → R defined by F (x, s) = s. As
above, a direct computation gives{

HessF = w′(s)e2w(s)g,

ΔF = w′(s)(k − 1).
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In particular we have the following lemma:

Lemma 4.2. Let Bk be a Riemannian manifold as in (4.2) and assume that the
function w satisfies b ≤ w′ ≤ a for some constants a, b > 0. If F : B → R is the
Busemann function defined as above, then

b‖X‖2 ≤ HessF (X,X) ≤ a‖X‖2

for any vector X orthogonal to grad F .

In particular the following consequence will be used in the main theorem.

Corollary 4.3. Under the conditions of Lemma 4.1 or Lemma 4.2 we have

ΔF ≥ (k − 1)b.

Remark 4.4. It is important to point out that Riemannian manifolds given by (4.2)
form a wide class. In particular, we may choose the manifold N in such a way that
B has positive sectional curvature in some directions (see [11]).

5. Main result and examples

In this section, we will apply the previous results in order to get a lower bound es-
timate for the first eigenvalue of the Laplace operator on submanifolds immersed on
Riemannian manifolds, which carries a Riemannian submersion on the two classes
of manifolds described as before. In particular, using Lemmas 4.1 and 4.2, and its
corollary above, we are able to present a unified proof to both cases.

Theorem 5.1. Let Bk be a complete Riemannian manifold as in Lemma 4.1 or as

in Lemma 4.2, and let π : M̃n → Bk be a Riemannian submersion. Let Mm be a

complete Riemannian manifold and let f : Mm → M̃n be an isometric immersion.

Assume that F : B → R is a Busemann function and consider its lifting F̃ : M̃ → R.

If F = F̃ |M is its restriction to M , then

ΔF ≥ (k − 1)b+HF (F̃ )− (n−m)
(
a+ 2‖A‖∞ + ‖αF‖∞

)
+H(F̃ ).

In particular, if

c = inf{(k − 1)b− ‖HF‖ − (n−m)
(
a+ 2‖A‖∞ + ‖αF‖∞

)
− ‖H‖} > 0,

then

λ1(M) ≥ c2

4
.

Proof. From Lemma 3.2 and Corollary 4.3 we have:

Δ̃F̃ = ΔF + 〈grad F̃ ,HF 〉 ≥ (k − 1)b+HF (F̃ ).(5.1)

On the other hand, from Lemma 2.2 we obtain

Δ̃F̃ = ΔF +
n−m∑
i=1

Hess F̃ (Ni, Ni)−H(F̃ ),(5.2)

where {N1, . . . , Nn−m} is an orthonormal frame of TM⊥. For each 1 ≤ i ≤ n−m,
we write

Ni = NH
i +NV

i ,
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where NH
i and NV

i denote the horizontal and vertical projection of Ni onto TM̃ ,
respectively. Moreover, since (5.2) is a tensorial equation, we may assume that each
NH

i is basic. Thus, using Lemmas 3.3, 4.1 and 4.2 we get

Δ̃F̃ ≤ ΔF + (n−m)
(
a+ 2‖A‖∞ + ‖αF‖∞

)
−H(F̃ ).

So, plugging this in (5.1) we obtain

ΔF ≥ (k − 1)a+HF (F̃ )− (n−m)
(
b+ 2‖A‖∞ + ‖αF‖∞

)
+H(F̃ ).

The result follows from Lemma 2.1. �

5.1. Lower bounds in warped-products. Suppose that the ambient space M̃n=
Hk ×ρ Fn−k admits a warped-product structure, where the warped function ρ
satisfies ‖grad ρ‖/ρ ≤ 1. By considering the projection on the first factor π :
Hk ×ρ Fn−k → Hk as a Riemannian submersion, we have that the tensor A is
identically zero, ‖αF‖∞ ≤ 1, and in particular ‖HF‖ ≤ n− k.

Let Mm be a complete Riemannian manifold and f : Mm → M̃n be an isometric
immersion such that its mean curvature vector H satisfies ‖H‖ ≤ α, where α is a
positive constant to be determined . If F : Hk → R is the Busemann function given
in (4.1), a lower bound estimate for the infimum in (5.1) goes as follows:

c = inf{k − 1− ‖HF‖ − (n−m)(1 + ‖αF‖∞)− ‖H‖}
≥ inf{k − 1− n+ k − 2(n−m)− ‖H‖}
= 2(k +m)− 3n− 1− α.

In particular, λ1(M) > 0 if we take 0 < α < 2(k +m)− 3n− 1.

5.2. Lower bounds in submersions with totally geodesic fibers. Let M̃n be

a Riemannian manifold with nonpositive sectional curvature and let π : M̃n → Hk

be a Riemannian submersion with totally geodesic fibers. This means that αF = 0,
and thus HF = 0. Furthermore, the submersion π is integrable in the sense that the
horizontal distribution is integrable (cf. [7, Proposition 3.1]). Thus, if f : Mm →
M̃n is an isometric immersion, whose mean curvature vector H satisfies ‖H‖ ≤ α
for some positive constant α < k +m− n− 1, we have

c ≥ k − 1− (n−m)− ‖H‖
≥ k +m− n− 1− α > 0,

and thus λ1(M) > 0.

Remark 5.2. As suggested by the referee, the complex hyperbolic space and bounded
symmetric domains may be interesting examples which are fitted in Theorem 5.1.
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