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QUASISPHERES AND METRIC DOUBLING MEASURES

ATTE LOHVANSUU, KAI RAJALA, AND MARTTI RASIMUS

(Communicated by Jeremy Tyson)

Abstract. Applying the Bonk-Kleiner characterization of Ahlfors 2-regular
quasispheres, we show that a metric two-sphere X is a quasisphere if and only
if X is linearly locally connected and carries a weak metric doubling measure,
i.e., a measure that deforms the metric on X without much shrinking.

1. Introduction

A homeomorphism f : (X, d) → (Y, d′) between metric spaces is quasisymmetric
if there exists a homeomorphism η : [0,∞) → [0,∞) such that

d(x1, x2)

d(x1, x3)
� t implies

d′(f(x1), f(x2))

d′(f(x1), f(x3))
� η(t)

for all distinct x1, x2, x3 ∈ X. Applying the definition with t = 1 shows that
quasisymmetric homeomorphisms map all balls to sets that are uniformly round.
Therefore, the condition of quasisymmetry can be seen as a global version of con-
formality or quasiconformality.

Starting with the work of Tukia and Väisälä [26], a rich theory of quasisym-
metric maps between metric spaces has been developed. An overarching problem
is to characterize the metric spaces that can be mapped to a given space S by a
quasisymmetric map.

This problem is particularly appealing when S is the two-sphere S2. There are
connections to geometric group theory, (cf. [3], [5], [6]), complex dynamics ([7], [8],
[13]), as well as minimal surfaces ([17]).

Bonk and Kleiner [4] solved the problem in the setting of two-spheres with “con-
trolled geometry”; see also [17], [18], [22], [23], [29]. We say that (X, d) is a quasi-
sphere if there is a quasisymmetric map from (X, d) to S

2. See Section 2 for further
definitions.

Theorem 1.1 ([4], Theorem 1.1). Suppose (X, d) is homeomorphic to S2 and
Ahlfors 2-regular. Then (X, d) is a quasisphere if and only if it is linearly locally
connected.

Finding generalizations of the Bonk-Kleiner theorem beyond the Ahlfors 2-
regular case and to fractal surfaces is important; applications include Cannon’s
conjecture on hyperbolic groups; cf. [2], [16] (by [9] the boundary of a hyper-
bolic group is Ahlfors Q-regular with Q greater than or equal to the topological
dimension of the boundary). A characterization of general quasispheres in terms
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of combinatorial modulus is given in [4, Theorem 11.1]. However, this result is
difficult to apply in practice and in fact an easily applicable characterization is not
likely to exist. Several types of fractal quasispheres have been found (cf. [1], [12],
[19], [27], [28], [30]), showing the difficulty of the problem.

In this paper we characterize quasispheres in terms of a condition related to
metric doubling measures of David and Semmes [10], [11]. These are measures that
deform a given metric in a controlled manner. More precisely, a (doubling) Borel
measure μ is a metric doubling measure of dimension 2 on (X, d) if there is a metric
q on X and C � 1 such that for all x, y ∈ X,

(1) C−1μ(B(x, d(x, y)))1/2 � q(x, y) � Cμ(B(x, d(x, y)))1/2.

It is well known that metric doubling measures induce quasisymmetric maps (X, d)
→ (X, q). Our main result shows that quasispheres can be characterized using a
weaker condition where we basically only assume the first inequality of (1). We call
measures satisfying such a condition weak metric doubling measures ; see Section 2.

Theorem 1.2. Let (X, d) be a metric space homeomorphic to S
2. Then (X, d) is a

quasisphere if and only if it is linearly locally connected and carries a weak metric
doubling measure of dimension 2.

To prove Theorem 1.2 we show, roughly speaking, that the first inequality in (1)
actually implies the second inequality. It follows that μ induces a quasisymmetric
map (X, d) → (X, q), and (X, q) is 2-regular and linearly locally connected. Ap-
plying Theorem 1.1 to (X, q) and composing then gives the desired quasisymmetric
map. It would be interesting to find higher-dimensional as well as quasiconformal
versions of Theorem 1.2. See Section 6 for further discussion.

2. Preliminaries

We first give precise definitions. Let X = (X, d) be a metric space. As usual,
B(x, r) is the open ball in X with center x and radius r, and S(x, r) is the set of
points whose distance to x equals r.

We say that X is λ-linearly locally connected (LLC) if for any x ∈ X and r > 0
it is possible to join any two points in B(x, r) with a continuum in B(x, λr), and
any two points in X \B(x, r) with a continuum in X \B(x, r/λ).

A Radon measure μ on X is doubling if there exists a constant CD � 1 such that
for all x ∈ X and R > 0,

(2) μ(B(x, 2R)) � CDμ(B(x,R)),

and Ahlfors s-regular, s > 0, if there exists a constant A � 1 such that for all x ∈ X
and 0 < R < diamX,

A−1Rs � μ(B(x,R)) � ARs.

Moreover, X is Ahlfors s-regular if it carries an s-regular measure μ.
We now define weak metric doubling measures. In what follows, we use notation

Bxy = B(x, d(x, y)) ∪B(y, d(x, y)).
Let μ be a doubling measure on (X, d). For x, y ∈ X and δ > 0, a finite sequence

of points x0, x1, . . . , xm in X is a δ-chain from x to y if x0 = x, xm = y and
d(xj , xj−1) � δ for every j = 1, . . . ,m.
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Now fix s > 0 and define a “μ-length” qμ,s as follows: set

qδμ,s(x, y) := inf
{ m∑

j=1

μ(Bxjxj−1
)1/s : (xj)

m
j=0 is a δ-chain from x to y

}

and

qμ,s(x, y) := lim sup
δ→0

qδμ,s(x, y) ∈ [0,∞].

Definition 2.1. A doubling measure μ on (X, d) is a weak metric doubling measure
of dimension s if there exists CW � 1 such that for all x, y ∈ X,

(3)
1

CW
μ(Bxy)

1/s � qμ,s(x, y).

In what follows, if the dimension s is not specified, then it is understood that s = 2,
and qμ,2 is shortened to qμ.

3. Proof of Theorem 1.2

In this section we give the proof of Theorem 1.2, assuming Proposition 3.1 to be
proved in the following sections. First, it is not difficult to see that if there exists
a quasisymmetric map ϕ : X → S2, then X is LLC, and

μ(E) := H2(ϕ(E))

defines a weak metric doubling measure on X. Therefore, the actual content in
the proof of Theorem 1.2 is the existence of a quasisymmetric parametrization,
assuming LLC and the existence of a weak metric doubling measure (of dimension
2). The proof is based on the following result.

Proposition 3.1. Let (X, d) be LLC and homeomorphic to S2. Moreover, assume
that (X, d) carries a weak metric doubling measure μ of dimension 2. Then qμ is a
metric on X and μ is a metric doubling measure in (X, qμ), that is, there exists a
constant CS � 1 such that also the bound

qμ(x, y) � CSμ(Bxy)
1/2

holds for all x, y ∈ X.

We will apply the well-known growth estimates for doubling measures. The proof
is left as an exercise; see [14, ex. 13.1].

Lemma 3.2. Let X be as in Proposition 3.1 and let μ be a doubling measure on
X. Then there exist constants C,α > 1 depending only on the doubling constant
CD of μ such that

μ(B(x, r2))

μ(B(x, r1))
� Cmax

{(
r2
r1

)α

,

(
r2
r1

)1/α
}

for all 0 < r1, r2 < diam(X).

Combining Proposition 3.1 and Lemma 3.2 shows that qμ induces a quasisym-
metric map. This is essentially Proposition 14.14 of [14]. We include a proof for
completeness.

Corollary 3.3. Let X and μ be as in Proposition 3.1. Then the identity mapping
i : (X, d) → (X, qμ) is quasisymmetric, and (X, qμ) is Ahlfors 2-regular.
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Proof. We denote q = qμ. We first show that i is a homeomorphism. Since (X, d)
is a compact metric space, it suffices to show that i is continuous, i.e., that any
q-ball Bq(x, r) contains a d-ball Bd(x, δ) for some δ = δ(x, r). Suppose that this
does not hold for some x ∈ X and r > 0. Then there exists a sequence (xn)

∞
n=1

such that d(xn, x) → 0 but q(xn, x) � r for all n ∈ N. Now Proposition 3.1 implies

r � q(xn, x) � Cμ(Bd(x, 2d(x, xn)))
1/2 n→∞−→ 0,

which is a contradiction. Thus i is a homeomorphism. Let x, y, z ∈ X be distinct.
By Proposition 3.1 and Lemma 3.2 we have

q(x, y)

q(x, z)
� C

μ(Bxy)
1/2

μ(Bxz)1/2
� C

μ(B(x, 2d(x, y)))1/2

μ(B(x, 2d(x, z)))1/2
� η

(
d(x, y)

d(x, z)

)
,

where η : [0,∞) → [0,∞) is the homeomorphism

η(t) = Cmax{tα/2, t1/2α}.
Thus i is η-quasisymmetric.

We next claim that μ is Ahlfors 2-regular on (X, q). Fix x ∈ X and 0 <
r < diam (X, q)/10. Since (X, q) is connected, there exists y ∈ Sq(x, r). Now by
Proposition 3.1,

C−2
S r2 � μ(Bxy) � C2

W r2.

On the other hand, the quasisymmetry of the identity map i and the doubling
property of μ give

C−1μ(Bq(x, r)) � μ(Bxy) � Cμ(Bq(x, r)),

where C depends only on CD and η. Combining the estimates gives the 2-regularity.
�

We are now ready to finish the proof of Theorem 1.2, modulo Proposition 3.1.
Indeed, Corollary 3.3 shows that there is a quasisymmetric map from (X, d) onto
the 2-regular (X, qμ). It is not difficult to see that the quasisymmetric image of
an LLC space is also LLC. Hence, by Theorem 1.1, there exists a quasisymmetric
map from (X, qμ) onto S

2. Since the composition of two quasisymmetric maps is
quasisymmetric, Theorem 1.2 follows.

4. Separating chains in annuli

We prove Proposition 3.1 in two parts. In this section we find short chains in
annuli (Lemma 4.3). In the next section we take suitable unions of these chains to
connect given points.

We first show that it suffices to consider δ-chains with sufficiently small δ. In
what follows, we use notation

cBxy = B(x, cd(x, y)) ∪B(y, cd(x, y)).

Lemma 4.1. Let (X, d) be a compact, connected metric space admitting a weak
metric doubling measure μ of some dimension s > 0. Then for any r > 0 there
exists δr > 0 such that if x, y ∈ X with d(x, y) � r, then we have

(4) 2CWC
2/s
D qδrμ,s(x, y) � μ(Bxy)

1/s,

where CW and CD are the constants in (3) and (2), respectively.
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Proof. Suppose to the contrary that (4) does not hold for some r > 0. Then there
exists a sequence of pairs of points (xj , yj)j for which d(xj , yj) � r and

q1/jμ,s (xj , yj) <
1

2CWC
2/s
D

μ(Bxjyj
)1/s

for all j = 1, 2, 3, . . . . Then by compactness we can, after passing to a subsequence,
assume that xj → x and yj → y where also d(x, y) � r. Let then k ∈ N be arbitrary
and j � k so large that Bxjyj

⊂ 4Bxy,

d(x, xj), d(y, yj) �
1

k
,

and

(5) μ(Bxxj
)1/s + μ(Byyj

)1/s <
1

3CW
μ(Bxy)

1/s.

The last estimate is made possible by the fact that μ({z}) = 0 for every point z in
the case of a doubling measure and a connected space, or more generally when the
space is uniformly perfect (see [11, 5.3 and 16.2]). Now choose a 1

j -chain z0, . . . , zm
from xj to yj satisfying

(6)
m∑
i=1

μ(Bzizi−1
)1/s <

1

2CWC
2/s
D

μ(Bxjyj
)1/s � 1

2CW
μ(Bxy)

1/s

so that x, z0, . . . , zm, y is in particular a 1
k -chain from x to y. Combining (5) and

(6), we have

q1/kμ,s (x, y) <
5

6CW
μ(Bxy)

1/s.

This contradicts (3) when k → ∞. �

In what follows, we will abuse terminology by using a non-standard definition
for separating sets.

Definition 4.2. Given A,B,K ⊂ X, we say that K separates A and B if there
are distinct connected components U and V of X \K such that A ⊂ U and B ⊂ V .

Lemma 4.3. Suppose (X, d) is λ-LLC and homeomorphic to S2, and μ a weak
metric doubling measure on X. Let k be the smallest integer such that 2k > λ.
Then there exists C > 1 depending only on λ, CD, and CW such that for any
x ∈ X, 0 < r < 2−8kdiamX and δ > 0 there exists a δ-chain x0, . . . , xp in the

annulus B(x, 25kr) \B(x, 22kr) such that
p∑

j=1

μ(Bxjxj−1
)1/2 � Cμ(B(x, r))1/2

and the union ∪j5Bxjxj−1
contains a continuum separating B(x, r) and X\B(x, 27kr).

Proof. Let x ∈ X, 0 < r < 2−8kdiamX and δ > 0 be arbitrary. By Lemma 4.1 we
may assume without loss of generality that

(7) qδμ(y, z) �
1

C ′μ(Byz)
1/2

for any y ∈ S(x, 23kr), z ∈ S(x, 24kr) and also δ < r by finding a finer chain than
possibly asked.
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Next we cover the annulus A = B(x, 25kr) \ B(x, 22kr) as follows: Let ε > 0 be
small enough so that μ(B(w, δ/10)) > ε2 for every w ∈ X (see again [11, 16.2]).
Then for every w ∈ A we can choose a radius 0 < rw < δ/10 with

ε2

2CD
� μ(B(w, rw)) � ε2.

Using the 5r-covering theorem, we find a finite number m of pairwise disjoint balls
Bj = B(wj , rj), rj = rwj

from the cover {B(w, rw)}w∈A, such that

A ⊂
m⋃
j=1

5Bj ⊂ B(x, 26kr) \B(x, 2kr).

Observe that for any point z in the thinner annulus A′ = B(x, 24kr) \ B(x, 23kr)
there exists a continuum in A joining z to some point y ∈ S(x, 23kr) by the LLC-
property. Hence there exists a subcollection B′

1, . . . , B
′
n of the cover (5Bj) forming

a ball chain from this y to z, meaning that y ∈ B′
1, z ∈ B′

n and B′
j ∩ B′

j+1 �= ∅.
Thus we can define a “counting” function u for this cover on A′ by setting u(z) to
be the smallest n ∈ {1, . . . ,m} so that there exists a ball chain (B′

i)
n
i=1 from some

y ∈ S(x, 23kr) to z.
Using (7), we find a lower bound for u on S(x, 24kr): Let y ∈ S(x, 23kr), z ∈

S(x, 24kr) be arbitrary and let (B′
i)

n
i=1 = (B(w′

i, 5r
′
i))

n
i=1 be the corresponding

chain. Then y = w′
0, w

′
1, . . . , w

′
n, z = w′

n+1 is also a δ-chain. Hence

μ(Byz)
1/2 � C ′

n+1∑
i=1

μ(Bw′
iw

′
i−1

)1/2 � C ′C3
Dnε

as every Bw′
iw

′
i−1

is contained in B(w′
l, 20rw′

l
), l = i or i − 1. On the other hand

B(x, 27kr) ⊂ B(y, 27k+1r), and since the balls Bj are disjoint,

mε2 � μ(B(y, 27k+1r)) � C7k+1
D μ(Byz),

implying n2 � m/C ′′ or u(z) � √
m/C ′′.

Let then n be the minimal value of u on S(x, 24kr) and for j = 1, 2, . . . , n define

Aj =
⋃

5Bi∩u−1(j) �=∅
5Bi.

By the definition of u each ball 5Bi can be contained in at most two “level sets”
Aj and so we obtain a constant C � 1 such that

min
1�j�n

∑
5Bi⊂Aj

μ(5Bi)
1/2 � 1

n

n∑
j=1

∑
5Bi⊂Aj

μ(5Bi)
1/2

� 1

n
C3

Dε · 2m

� 2C3
D

√
m

n

√
ε2m

� Cμ(B(x, r))1/2.

Let j ∈ {1, . . . , n} be the index for which the above left hand sum is smallest.
Since by construction Aj necessarily intersects any curve joining B(x, 2kr) and

X \ B(x, 26kr), it separates B(x, r) and X \ B(x, 27kr) by the LLC-property as
2k > λ. Hence the closed set Aj contains a continuum K separating these sets by
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topology of S2; see for example [20] V 14.3.. Now K is covered by a ball chain

B(w′
0, 5r

′
0), . . . , B(w′

p, 5r
′
p) of closures of balls 5Bi contained in Aj . Hence these

points w′
0, . . . , w

′
p are the desired δ-chain, since clearly d(w′

i, w
′
i+1) � 5r′i+5r′i+1 < δ

and
p∑

i=1

μ(Bw′
iw

′
i−1

)1/2 � Cμ(B(x, r))1/2

by our choice of j. �

Remark 4.4. Note that in the claim of the above lemma the constant C is uniform
with respect to the required step δ of the chain; we can in fact find arbitrarily fine
chains and have the same estimate from above for

∑
μ(Bj)

1/2. This is essentially
obtained by the doubling property and the 5r-covering theorem. We also work with
dimension s = 2, since passing from the lower estimate of Lemma 4.1 to the upper
in the claim we actually switch the power 1/s of the measure to (s − 1)/s, both
1/2 in the proof. Thus this argument seems not to apply for higher dimension (see
Question 6.3). Moreover, the topology of S2 is used for finding a single separating
component, which is not always possible for example on a torus.

5. Proof of Proposition 3.1

In this section (X, d, μ) satisfies the assumptions of Proposition 3.1. Lemma 4.3
and the 5r-covering lemma then give the following: For any given B = B(x,R) ⊂ X
and δ > 0 there is a cover of the x-component U of B by at most M = M(λ,CD, L)
balls {Bi}mi=1 with centers in U such that for every i

(1) L−2μ(B) � μ(Bi) � L−1μ(B).

(2) A continuum Ki ⊂ 27kBi \Bi separates Bi and X \ 27kBi.
(3) Ki ⊂

⋃
p 5Bxi

px
i
p−1

, where (xi
p)p is a δ-chain.

(4)
∑

p μ(Bxi
px

i
p−1

)1/2 � Cμ(Bi)
1/2.

Here k is as in Lemma 4.3, L > C8k
D , and C = C(λ,CD, CW ).

We would like to take unions of the continua Ki to join points. However, the
union ∪iKi need not be a connected set. The following lemma takes care of this
problem. We denote by K̂i the interior of Ki, i.e., the component of X \Ki that
contains Bi.

Lemma 5.1. Let i ∈ {1, 2}. Let Bi = B(xi, ri) ⊂ X be a (small) ball and let Ki ⊂
27kBi \Bi be a continuum that separates Bi and X \ 27kBi. Suppose K̂1 ∩ K̂2 �= ∅.
If K1 ∩K2 = ∅, then either K1 ⊂ K̂2 and K̂1 ⊂ K̂2 or K2 ⊂ K̂1 and K̂2 ⊂ K̂1.

Proof. Since X is homeomorphic to S2, path components of an open set in X
are exactly its components. In addition such components are open. Since K1

and K2 are non-empty disjoint compact sets, there exist path connected open sets
U1, U2 ⊂ X such that K1 ⊂ U1 ⊂ X \K2 and K2 ⊂ U2 ⊂ X \K1. Let w ∈ K̂1∩K̂2.

Let γ : [0, 1] → X be a path from w to z ∈ X \ (27kB1 ∪ 27kB2). By the separation
properties γ([0, 1]) intersects K1 and K2. Let

s = inf{t ∈ [0, 1] | γ(t) ∈ K1 ∪K2}.
Now s > 0 and γ̃ := γ|[0,s] is a path that intersects K1 ∪K2 exactly once. Without
loss of generality we may assume γ(s) ∈ K1. By construction of U1 the point w can

be connected to any point in K1 inside X \K2. Thus K1 ⊂ K̂2. Now let y ∈ K̂1.
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It suffices to show that there exists a path in K̂2 from y to w. Suppose there is no
such path. Now the argument of the first part of this proof implies that K2 ⊂ K̂1.
Let S be the number obtained by changing the infimum in the definition of s to the
respective supremum. Necessarily γ(S) ∈ K2, since otherwise we could construct a

path in K̂2 from w to z. Since K2 ⊂ U2 ⊂ K̂1, there exists a path connecting w to
γ(S) in K̂1, i.e., there exists a path from w to z in K̂1, which is impossible. Thus

K̂1 ⊂ K̂2. �

Motivated by Lemma 5.1 we say that a continuum Ki is maximal (in {Ki}mi=1)
if it is not contained in the interior of some other Kj . Define K to be the union of
all maximal continua in {Ki}mi=1. Clearly K is compact. Let us show that it is also
connected. Suppose Ki and Kj are distinct maximal continua. Let B(i) and B(j)

be the balls in {Bi} that are contained in the interiors K̂i and K̂j , respectively.
Since {Bi} is a cover of the x-component of B, we can find a chain of balls in {Bi}
connecting any pair of points in the component. On the other hand, every ball Bi

intersects the x-component, so it suffices to consider the case where B(i)∩B(j) �= ∅.
By Lemma 5.1 either Ki ∩Kj �= ∅ or we may assume that Ki ⊂ K̂j , but the latter
contradicts maximality. Thus K is a continuum. We have now proved the following
proposition.

Proposition 5.2. Fix L > C8k
D , δ > 0, and B = B(x,R) ⊂ X. Then there are

at most M = M(λ,CD, L) < ∞ balls Bi centered at the x-component U of B such
that

(1) U ⊂ ∪iBi.
(2) μ(Bi) � 1

Lμ(B) for all i.

(3) For every i there is a continuum Ki ⊂ 27kBi \ Bi which separates Bi and

X \ 27kBi.
(4) Ki ⊂

⋃
p 5Bxi

px
i
p−1

, where (xi
p)p is a finite δ-chain.

(5)
∑

p μ(Bxi
px

i
p−1

)1/2 � Cμ(B)1/2, C = C(λ,CD, CW ).

(6) The union K of all maximal continua in {Ki} is a continuum.

Now we can finish the proof of Proposition 3.1 with the following:

Lemma 5.3. There exists a constant C = C(λ,CD, CW ) such that for any δ > 0
and x, y ∈ X,

qδμ(x, y) � Cμ(Bxy)
1/2.

Proof. Fix x, y ∈ X and apply Proposition 5.2 to B1 = B(x, 22kd(x, y)) with L =
C15k

D . Note that x and y belong to the same component of B1. Let z = x or z = y.
Let us define balls Bl,z recursively for l � 2. Define B1,z = B1. Suppose we have
defined the set Bn,z for all n � l. Apply Proposition 5.2 with the same L to Bl,z

to find a ball Bl,z
j which contains z. By Lemma 5.1 Bl,z

j is contained in the interior

of some maximal continuum Kl,z
j′ . Define Bl+1,z = 27kBl,z

j′ . Note that Proposition

5.2 also yields the balls Bn,z and Bn,z
i and continua Kn,z

i and Kn,z. Also, by the
separation properties and Lemma 5.1

z ∈ Bl,z
j ⊂ K̂l,z

j ⊂ K̂l,z
j′ ⊂ 27kBl,z

j′ = Bl+1,z.
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Let ε > 0 and let Bz = B(z, rz) be a ball with rz � 6δ and μ(Bz) � C−1
D ε2. Define

Kz :=

lεz⋃
n=1

Kn,z,

where lεz is the smallest integer l that satisfies Kl,z ⊂ B(z, 100−1rz). Such a number
exists, since z ∈ Bl,z for all l. Moreover, our choice of L gives C7k

D L−1 = τ < 1 and

(8) μ(Bl,z) � C7k
D L−1μ(Bl−1,z) � τμ(Bl−1,z) � . . . � τ (l−1)μ(B1).

In particular, diam(Bl,z)
l→∞−→ 0. We next show that Kz is a continuum. It is clearly

compact, and connectedness follows if

(9) Kn,z ∩Kn+1,z �= ∅.

Let j be the index for which 27kBn,z
j = Bn+1,z. To show (9) it suffices to show

that Kn,z
j ∩ Kn+1,z

i �= ∅ for some maximal Kn+1,z
i . By Lemma 5.1 there exists a

maximal continuum Kn+1,z
i such that the interiors of Kn+1,z

i and Kn,z
j intersect.

Moreover, either (9) holds or one of Kn+1,z
i ⊂ K̂n,z

j , Kn,z
j ⊂ K̂n+1,z

i is true for

any such i. Suppose Kn,z
j ⊂ K̂n+1,z

i . By separation properties Bn,z
j ⊂ 27kBn+1,z

i ,
which together with our choice of L leads to a contradiction:

μ(Bn,z
j ) � μ(27kBn+1,z

i ) � C7k
D μ(Bn+1,z

i ) � C7k
D L−1μ(Bn+1,z)

= C7k
D L−1μ(27kBn,z

j ) � C14k
D L−1μ(Bn,z

j ) < μ(Bn,z
j ).

Now if (9) were not true, Kn+1,z
i ⊂ K̂n,z

j for every i for which the interiors ofKn+1,z
i

and Kn,z
j intersect. This is impossible, since every ball Bn+1,z

i lies in the interior

of some maximal continuum and at least one of them intersects Kn,z
j . Hence (9)

holds and Kz is a continuum.
Finally, define

K = Kx ∪Ky.

Note that K is a continuum, since by construction K1,x = K1,y. Recall that for all
i, j, z there exists a finite δ-chain (xi,j,z

p )p in 27kBi,z
j \Bi,z

j such that

Ki,z
j ⊂

⋃
p

5Bxi,j,z
p xi,j,z

p−1
⊂

⋃
p

6Bxi,j,z
p xi,j,z

p−1
,

and ∑
p

μ(Bxi,j,z
p xi,j,z

p−1
)1/2 � Cμ(Bi,z

j )1/2.

Since the set of balls

B :=
{
B(xi,j,z

p , 6d(xi,j,z
p , xi,j,z

p−1)), B(xi,j,z
p−1 , 6d(x

i,j,z
p , xi,j,z

p−1))
}
i,j,p,z

forms an open cover for the continuum K, we may extract a finite chain of balls
(Ai)

N−1
i=1 of the set B so that, denoting A0 = Bx, AN = By we have Ai ∩Ai−1 �= ∅

for i = 1, . . . N . Let x0 = x, x2N = y and for other indices choose x2i ∈ Ai so that
Ai = B(x2i, ri) for some ri � 6δ. Let x2i−1 ∈ Ai ∩ Ai−1 for i = 1, . . . , N . Now
(xi)

2N
i=0 is a 6δ-chain between the points x and y. Moreover, by (8)
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2N∑
i=1

μ(Bxixi−1
)1/2 � 2

N∑
i=0

μ(2Ai)
1/2 � C

N−1∑
i=1

μ(Ai)
1/2 + 4ε

� C
∑
B∈B

μ(B)1/2 + 4ε � C
∑
z,i,j,p

μ(B(xi,j,z
p , d(xi,j,z

p , xi,j,z
p−1)))

1/2 + 4ε

� C
∑
z,i,j

∑
p

μ(Bxi,j,z
p xi,j,z

p−1
)1/2 + 4ε � C

∑
z,i

∑
j

μ(Bi,z
j )1/2 + 4ε

� C
∑
z

∑
i

Mμ(Bi,z)1/2 + 4ε � CM
∑
z

∑
i

τ (i−1)/2μ(B1)1/2 + 4ε

� CMμ(B1)1/2 + 4ε = CMμ(B(x, 22kd(x, y)))1/2 + 4ε

� CMμ(Bxy)
1/2 + 4ε.

Since ε is arbitrary, the claim follows.
�

6. Concluding remarks

It is natural to ask if Theorem 1.2 remains valid with weak metric doubling
measures of dimension s �= 2. The two lemmas below show that it does not.

Lemma 6.1. Let (X, d) be a linearly locally connected metric space homeomorphic
to S2, and 0 < s < 2. Then X does not carry weak metric doubling measures of
dimension s.

Proof. Assume towards a contradiction that X carries such as measure μ. Then
there exists C > 0 such that for every x, y ∈ X the following holds: if (xi)

m
i=0 is a

δ-chain from x to y and if δ is small enough, then

μ(Bxy)
1/2 = μ(Bxy)

1/2−1/sμ(Bxy)
1/s � Cμ(Bxy)

1/2−1/s
m∑
i=1

μ(Bxixi−1
)1/s

� Cμ(Bxy)
1/2−1/s max

i
μ(Bxixi−1

)1/s−1/2
m∑
i=1

μ(Bxixi−1
)1/2.

Notice that
max

i
μ(Bxixi−1

)1/s−1/2 → 0 as δ → 0.

Applying the estimates to all δ-chains and letting δ → 0, we conclude that μ is a
weak metric doubling measure of dimension 2 and

μ(Bxy)
1/2 � εqμ,2(x, y) for all ε > 0.

Since μ(Bxy) > 0 for all distinct x and y, if follows that qμ,2(x, y) = ∞. This
contradicts Theorem 1.2. �

Lemma 6.2. Fix s > 2. Then there exists a metric space (X, d), homeomorphic
to S2 and LLC, such that X carries a weak metric doubling measure of dimension
s but there is no quasisymmetric f : X → S2.

Proof. Let (R2, d) be a Rickman rug; d is the product metric

d((x1, y1), (x2, y2)) =
(
|x1 − x2|2 + |y1 − y2|2/(s−1)

)1/2

.
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It is well known that there are no quasisymmetric maps from (R2, d) onto the
standard plane. Moreover, it is not difficult to show that μ = H1 ×Hs−1 is a weak
metric doubling measure of dimension s on (R2, d). To construct a similar example
homeomorphic to S2, one can apply a suitable stereographic projection. �

It would be interesting to extend Theorem 1.2 to higher dimensions. Recall that
the Bonk-Kleiner theorem (Theorem 1.1) does not extend to dimensions higher
than 2; see [24], [15], [21].

Question 6.3. Let (X, d) be a metric space homeomorphic to Sn, n � 3. Assume
that X is linearly locally contractible and carries a weak metric doubling measure
of dimension n. Is there a quasisymmetric f : (X, d) → (X, d′), where (X, d′) is
Ahlfors n-regular?

Recall that (X, d) is linearly locally contractible if there exists λ′ � 1 such that
B(x,R) ⊂ X is contractible in B(x, λ′R) for every x ∈ X, 0 < R < diamX/λ′. Lin-
ear local contractibility is equivalent to the LLC condition whenX is homeomorphic
to S2; see [4].

The basic tool in the proof of Theorem 1.2 was a coarea-type estimate for real-
valued functions. Extending our method to higher dimensions would require similar
estimates for suitable maps with values in R

n−1, which are difficult to construct
when n � 3. This problem is related to the deep results of Semmes [25] on Poincaré
inequalities in Ahlfors n-regular and linearly locally contractible n-manifolds.

Finally, it is also desirable to characterize the metric spheres that can be uni-
formized by quasiconformal homeomorphisms which are more flexible than qua-
sisymmetric maps; see [22]. However, it is not clear which definition of quasicon-
formality should be used in the generality of possibly fractal surfaces. Our meth-
ods suggest a measure-dependent modification to the familiar geometric definition.
More precisely, given a measure μ, conformal modulus should be defined applying
not the usual path length but a μ-length as in Section 2.
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