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Abstract. This article generalizes joint work of the first author and I. Swan-
son to the s-multiplicity recently introduced by the second author. For k a
field and X = [xi,j ] an m× n-matrix of variables, we utilize Gröbner bases to

give a closed form the length λ(k[X]/(I2(X)+m�sq�+m[q])), where s ∈ Z[p−1],
q is a sufficiently large power of p, and m is the homogeneous maximal ideal
of k[X]. This shows this length is always eventually a polynomial function of
q for all s.

1. Introduction

One of the most well studied and intriguing invariants for positive characteristic
commutative algebra is the Hilbert-Kunz multiplicity. Specifically in a local ring
(R,m, k), where k has positive characteristic, the length λ(R/m[q]) = eHK(R)qd +
O(qd−1) as was first shown by P. Monsky [Mon83], building on work of E. Kunz.
Much subtlity lies in the lower order terms. When R is excellent, normal, and
with perfect residue field, there is a sharper form λ(R/m[q]) = eHK(R)qd+βqd−1+
O(qd−2) [HMM04]. However, in contrast to the Hilbert-Samuel function, one cannot
expect this length to be polynomial in q, even for nice rings in small dimensions.
Despite its complication, the first author and I. Swanson showed that this length
function is a polynomial in q for R the determinantal ring defined by 2-minors
[MS13]. The techniques therein are combinatorial in nature, building on work of K.
Eto and K.-i. Yoshida [EY03], and were pushed later by Swanson and M. Robinson
to give a closed form as a sum of products of binomial coefficients, yielding a
complete understanding of the Hilbert-Kunz function of such rings.

Recently, the second author introduced a type of interpolation between Hilbert-
Samuel and Hilbert-Kunz multiplicities. Specifically for s a positive real number,
the s-multiplicities es(R) form a continuous family of real numbers agreeing with
the Hilbert-Samuel multiplicity e(R) for small values of s and agreeing with the
Hilbert-Kunz multiplicity eHK(R) for large values of s. These arise as suitable nor-
malizations of the limit limq→∞ q−dλ(R/(m�sq� + m[q])), which is known to exist
[Tay]. This family offers an important hope to deform results from one multi-
plicity to another. Standing in the way are the multiplicities es(R) which agree
with neither the Hilbert-Samuel nor Hilbert-Kunz multiplicities, and so far these
intermediate values are not well understood.
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Fixing s ∈ Z[p−1], for small values of s, the length λ(R/(m�sq� + m[q])) is even-
tually a polynomial in q, and for large values of s the length can be significantly
more complicated. However, when R is the determinantal ring defined by 2-minors,
this length function is eventually a polynomial in q for large values of s too. The
purpose of this short article is to show in such a case that this length function
is eventually a polynomial in q for all such s’s and to give a closed form for it
similar to [RS15]. The final form of this is our main theorem, which is a sum of
products of binomials and involves the monus operator, denoted � and defined by
a �b = max{a−b, 0}. In this theorem and throughout the paper, unrestricted sums
are interpreted as being over all integers.

Theorem (Theorem 3.9). Fix k a field, p an integer, and q a p-power. Let X be
an m×n-matrix of variables, let m be the homogeneous maximal ideal of k[X], and
let I2(X) be the ideal of 2× 2-minors. Let s ∈ R>0 such that sq ∈ Z, and set

R(m,n, s, q) :=
∑
a

∑
b

∑
�

(
m− 1

a

)(
n− 1

b

)(
sq + �

a+ b+ 1

)(
a

�

)(
b

�

)
,

S(m,n, s, q) :=
∑
i>0

∑
j>0

∑
a

∑
b

∑
�

(−1)i+j

(
m

i

)(
n

j

)(
(j � i)q +m− 1

m− 1− a

)

×
(
(i � j)q + n− 1

n− 1− b

)(
(s−max{i, j})q + �

a+ b+ 1

)(
a

�

)(
b

�

)
.

The length λ
(

k[X]
m�sq�+m[q]+I2(X)

)
= R(m,n, s, q) − S(m,n, s, q). Notably, this is a

polynomial in q.

2. Preliminaries

Unless otherwise stated, p always denotes a positive prime integer, q a power of
p, and k a field of characteristic p. Throughout s is a positive real number and λ
denotes length of a module. The s-multiplicity, introduced in [Tay], is defined as
follows. Fix a local ring (R,m) of characteristic p and two m-primary ideals I and
J . The following limit [Tay, Thm. 2.1] exists:

hs(I, J) := lim
e→∞

λ(R/I�sp
e� + J [pe])/ped.

For small values of s, hs(I, J) =
sd

d! e(I), whereas for large values of s, hs(I, J) =
eHK(J). When R is regular of dimension d,

Hs(d) := hs(m,m) =

�s�∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d

offers a normalizing factor, and one defines the s-multiplicity by es(I, J) :=
hs(I, J)/Hs(d). We follow the usual conventions denoting es(R) := es(m,m) and
similarly for hs.

This article concerns the s-length functions hs(R) where R is the quotient of a
polynomial ring with defining ideal the 2× 2-minors of a matrix of variables. The
techniques follow similarly to [MS13,RS15]. We first recall notation.

Definition 2.1. We call a monomial
∏

i,j x
pi,j

i,j a staircase monomial if whenever

i < i′ and j < j′, then pi,jpi′,j′ = 0. A staircase monomial is called a stair
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monomial if there exist c ∈ {1, . . . ,m} and d ∈ {1, . . . , n} such that pl,k = 0
whenever (l − c)(k − d) �= 0. Thus the indices (i, j) for which pi,j �= 0 all lie in the
union of part of row c with part of column d, either in a ⌜ or a ⌟ configuration.
A stair monomial is called a q-stair monomial if for such c, d,

∑
k pc,k = q =∑

k pk,d.

Remark 2.2. Notice that monomials p in k[X] may be identified with integer valued
m× n-matrices by writing p =

∏
x
pi,j

i,j and associating p to (pi,j). We call this its

exponent matrix. Staircase monomials
∏

i,j x
pi,j

i,j are so called as the indices

(i, j) for which pi,j �= 0 lie on a southwest-northeast staircase type pattern; i.e.,
their exponent matrices have support in a pattern like the following:⎡

⎢⎢⎢⎢⎣
• • •
•

• • •
•

• • • •

⎤
⎥⎥⎥⎥⎦ .

Under this identification, the multiplicative semigroup of monomials is identified
with the additive semigroup of non-negative integer valued matrices. We tacitly
use this identification to keep the notation in the proofs to a minimum.

We start with an elementary lemma about staircase monomials implicit in the
works [MS13,RS15].

Lemma 2.3. Let X be a generic m× n-matrix.

(1) Any monomial in k[X] is equivalent to a staircase monomial modulo I2(X).
(2) If p is a monomial and q is a staircase monomial with p ≡ q mod I2(X),

then p has the same degree, row, and column sums as q.

Proof. Let p be a monomial in k[X], identified with its exponent matrix (pi,j).
The key mechanic at work here is that when a < b and c < d, modulo the minor
xa,cxb,d − xa,dxb,c, the monomial p is equivalent to the monomial p′ with exponent
matrix (p′i,j) where

p′i,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pi,j (i, j) �= (a, c), (b, d), (b, c), (a, d),

pa,c + 1 (i, j) = (a, c),

pb,d + 1 (i, j) = (b, d),

pa,d − 1 (i, j) = (a, d),

pb,c − 1 (i, j) = (b, c).

From this the second claim is immediate as modifying monomials using these de-
terminants clearly preserve all listed characteristics.

To prove the first claim, a simple induction on the number of columns allows us
to assume that any monomial in correspondence to the augmented m × n-matrix
[(pi,j)1≤j≤n−1|0] is equivalent modulo I2(X) to a staircase monomial; that is, mod-
ulo I2(X) we may assume p has the staircase shape for the first n − 1 columns.
Set i to be the smallest row index so that pi,n−1 �= 0. We now induce on the row
indices i′ such that i ≤ i′ and pi′,n �= 0. If there are none or if the only one is i′ = i,
then p is already a staircase monomial. Otherwise, assume by induction that p is
equivalent modulo minors to a staircase monomial in the first n − 1 columns with
support of the last column in rows 1 through i′ − 1, and that pi′,n �= 0
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If pi′,j = 0 for all j, then up to a multiple of the minor xi,n−1xi′,n−xi′,n−1xi,n, p
is equivalent to a monomial with pi,n−1pi′,n = 0 and the rest follows by induction.
Otherwise, we may set j to be the largest column index for which pi′,j �= 0. If the
value pi′,n is larger than

∑
pk,� where i ≤ k ≤ i′, j ≤ � ≤ n but (k, �) �= (i′, n),

then using appropriate minors, one may assume that p is equivalent to a monomial
with the same support as p outside the ranges i ≤ k ≤ i′ and j ≤ � ≤ n but where
pk,� = 0 for i ≤ k ≤ i′ and j ≤ � ≤ n unless either k = i′ or j = n, i.e., is a staircase
monomial. If

∑
pk,� is smaller than pi′,n, then again we may use minors to reduce

p modulo I2(X) to a monomial which is staircase up to the last column but for
which pi′,n = 0, and the rest follows by induction. �
Theorem 2.4. Fix X a generic m × n-matrix and m the homogeneous maximal
ideal in k[X]. For I an m-primary monomial ideal in k[X], the set of staircase
monomials not in I forms a k-basis for k[X]/(I2(X) + I).

Proof. It suffices to show the claim for I = mt for fixed t as the theorem follows
by noting that when I is m-primary, mt ⊂ I for some power t and a k-basis for
k[X]/(I2(X) + I) is obtained by eliminating from a k-basis of k[X]/(I2(X) + mt)
the elements which lie in I.

Set T ⊂ k[X] to be the ideal generated by all staircase monomials of degree
t. Following the proof of [MS13, Thm. 2.4], the theorem follows immediately once
we’ve shown that G = I2(X) + T ⊂ I2(X) + mt is a Gröbner basis. The equality
I2(X)+T = I2(X)+mt follows by the first claim of Lemma 2.3. To finish the proof,
one need only check, via the Buchberger algorithm, that S-polynomials S(f, g) for
any generators f and g of I2(X) + T exist. This is immediately trivial unless f is
a determinant, g is a staircase monomial, and their leading terms share a variable
in common. The rest of the check is straightforward and follows by repeating the
same case by case analysis as in the proof of [MS13, Thm. 2.2]. �

Remark 2.5. In the special case that I = m[q] one notes that the basis guaranteed
by Theorem 2.4 agrees with the base guaranteed by [MS13, Thm. 2.2], as the set
of staircase monomials which are not in I are precisely those not divisible by any
q-stair monomials.

Corollary 2.6. Fix X a generic m × n-matrix and m the homogeneous maximal
ideal in k[X]. For any positive integer s, a k-basis for m�sq�+m[q]+I2(X) consists of
staircase monomials of degree at most �sq� and having either all row sums smaller
than q or all column sums smaller than q.

It now suffices to turn our attention to carefully counting the k-basis of m�sq� +

m[q] + I2(X). The computation of λ
(

k[X]
m�sq�+m[q]+I2(X)

)
follows an expected com-

binatorial argument. Following the techniques in [RS15], we explain how to give a
precise enough monomial count.

In the rest of the paper we will be operating under the assumptions that s ∈
Z[p−1] and q is large enough that sq ∈ Z. We do this because we are primarily
interested in establishing that the length function is polynomial in q. It is unrea-
sonable to expect such behavior for s /∈ Z[p−1]. As a simple example, consider the
ring R = F2[x, y] and let m = (x, y) and s = 4

3 . For any e ∈ N, we have that

�spe� =
⌈
2e+2

3

⌉
=

⎧⎨
⎩

2e+2+1
3 if e is odd,

2e+2+2
3 if e is even.
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From this we can easily compute the length function in question:

λ(R/m�spe� +m[pe]) =

{
7
9p

2e + 5
9p

e − 2
9 if e > 0 is odd,

7
9p

2e + 7
9p

e − 5
9 if e > 0 is even.

This example shows that even in the simplest cases, we cannot expect the length
function to be equal to a single polynomial when s /∈ Z[p−1].

3. Combinatorics

We utilize the convention that
(
m
n

)
= 0 if n < 0, m < n, or m < 0. Unspecified

summations are over all integers. We are interested in counting staircase mono-
mials with restricted row and column sums. Using [RS15, Lem. 2.4], it suffices
to count (m + n)-tuples (x1, . . . , xm, y1, . . . , yn) ∈ Zm+n

≥0 , where we interpret the
xi’s as row sums and yj ’s as column sums of the associated exponent matrix to
the staircase monomial. This forces the condition

∑
i xi =

∑
j yj , and the lemma

[RS15, Lem. 2.4] gives a bijection between such tuples and staircase monomials.
Thus by Corollary 2.6, to calculate the length of k[X]/(I2(X) + m�sq� + m[q]),
it suffices to count all (m + n)-tuples (x1, . . . , xm, y1, . . . , yn) ∈ Zm+n

≥0 such that∑
i xi =

∑
j yj < �sq� and either all xi < q for all 1 ≤ i ≤ m or all yj < q for all

1 ≤ j ≤ q. There is a natural symmetry to this requirement which we exploit via
an inclusion-exclusion type argument. To this end, we introduce two symbols, T
and U , which count monomials meeting relevant conditions.

Definition 3.1. Fix m,n, r, and q in N. Let T (m,n, r, q) be the number of m+n-
tuples, (x1, . . . , xm, y1, . . . , yn) ∈ Zm+n

≥0 such that∑
i

xi =
∑
j

yj < r and xi < q for all 1 ≤ i ≤ m.

Also let U(m,n, r, q) of all m + n-tuples (x1, . . . , xm, y1, . . . , yn) ∈ Zm+n
≥0 be such

that ∑
i

xi =
∑
j

yj < r, for all i, xi < q, and for all j, yj < q.

Remark 3.2. The functions T (m,n, r, q) and U(m,n, r, q) were utilized in Eto and
Yoshida’s calculation of the Hilbert-Kunz multiplicity of the determinantal ring
defined by 2-minors, viewed as the Segre product of two polynomial rings [Eto02,
EY03]. Specifically, for X an m×n-matrix of variables, the ring k[X]/I2(X) is iso-
morphic to k[z1, . . . , zm]#k[y1, . . . , yn]. From [MS13, Rmk. 2.5], one expresses the
length using the following monomial counts. Set αm,d to be the number of mono-
mials in k[z1, . . . , zm] of total degree d and αm,d,q to be the number of monomials
in k[z1, . . . , zm] of total degree d and zi-degree at most q for all i, and similarly
for k[y1, . . . , ym]. From [MS13, Rmk. 2.5] one expresses the length via inclusion-
exclusion:

λ(k[X]/(I2(X)+m
[q])) =

(q−1)n∑
d=0

αm,dαn,d,q+

(q−1)m∑
d=0

αn,dαm,d,q−
(q−1)m∑
d=0

αn,q,dαm,d,q.

Immediately one has

λ(k[X]/(I2(X)+m�sq�+m[q])) =

�sq�∑
d=0

αm,dαn,d,q+

�sq�∑
d=0

αn,dαm,d,q−
�sq�∑
d=0

αn,q,dαm,d,q.
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The functions T (n,m, r, q) and U(n,m, r, q) arise from exploiting the correspon-
dence in [RS15, Lem. 2.4] between monomials and tuples.

Our goal is to give a closed form for T (m,n, r, q) and U(m,n, r, q). We start
with a helpful auxiliary combinatorial identity.

Lemma 3.3. For a, b, c ∈ N,
∞∑

w=0

(
c+ w

a+ b

)(
a

w

)(
b

w

)
=

(
c

a

)(
c

b

)
.

We offer two proofs of this statement. The first is based on the Zeilberger-Wilf
algorithm. The second is a more elaborate combinatorial proof which realizes a
bijection between two sets, and each of the sets obviously has cardinality equal to
one of the sides of this identity.

Proof of Lemma 3.3. Set F (w, a) =
(
c+w
a+b

)(
a
w

)(
b
w

)
and

G(w, a) =
w2(−a− b+ c+ w)

(1 + a+ b)(−1− a+ w)
F (w, a).

One may immediately verify the identity

(1) G(w + 1, a)−G(w, a) = (a− c)F (w, a) + (1 + a)F (w, a+ 1).

Setting H(a) :=
∑

w F (w, a) and summing (1) over w we have 0 = (a− c)H(a) +
(1 + a)H(a+ 1), and thus

H(a) =
(c− a+ 1) · · · (c)

a!
H(0) =

(
c

a

) 0∑
w

(
c+ w

b

)(
b

w

)
=

(
c

a

)(
c

b

)
.

�

Next, we give a stronger combinatorial proof of Lemma 3.3. We introduce some
notation used only for this proof. For n ∈ N, let [n] denote the set {1, 2, . . . , n}.
By a colored integer we mean an element of [c] × {red, blue}. We call the first
component of a colored integer its value and we call the second component its color.
We impose an order on the set of colored integers by declaring that red < blue and
using the lexicographic order. In particular, x < x′ if either the value of x is less
than the value of x′ or their values are equal, x is red, and x′ is blue. For example,
2×blue < 3× red and 5× red < 5×blue. By a chain of type (a, b) we mean a chain
of colored integers x1 < · · · < xa+b containing a red integers and b blue integers.
Such a chain is determined completely by the values of the red integers and the
values of the blue integers, and so the number of chains of type (a, b) is

(
c
a

)(
c
b

)
.

Proof of Lemma 3.3. We show that the number of chains of type (a, b) is equal to
the number of 4-tuples (w,A,B,C), where w is an integer, A ⊆ [a] has size w,
B ⊆ [b] has size w, and C ⊆ [c + w] has size a + b. The latter set clearly has

size
∑∞

w=0

(
c+w
a+b

)(
a
w

)(
b
w

)
, and so finding such a bijection immediately establishes

the desired equality. All sets involved are totally ordered, so we utilize the notation
{i1 < · · · < in} for a set of natural numbers i1, . . . , in ordered as indicated.

We first define a function ϕ from the set of all chains of type (a, b) to the set of
4-tuples. To do so, we need one more piece of terminology. We call a consecutive
pair of colored integers (xi, xi+1) with xi < xi+1 an rb-pair if xi is red and xi+1 is
blue. Note by the ordering that there are two types of rb-pairs, those with equal
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value and those with differing values. We call an rb-pair stable provided the values
in the pair agree.

Let X be a chain of type (a, b) consisting of colored integers x1 < · · · < xa+b. Let
{i1 < · · · < ia} be the set of indices of red integers in X and let {j1 < · · · < jb} be
the set of indices of blue integers in X. We first encode the rb-pairs. Set A = {� :
(xi� , xi�+1) is an rb-pair} and similarly B = {� : (xj�−1, xj�) is an rb-pair}. Clearly
A ⊆ [a] and B ⊆ [b], and #A = #B.

We now produce the tuple (w,A,B,C). The sets A and B have already been
defined and both have cardinality w. It suffices now to construct C. This will
encode both the values of the chain and the locations of the stable rb-pairs. Set
C ′ ⊆ [c] to be the set of values of the elements of X. To capture the location of the
stable rb-pairs in a recoverable manner, we write A = {s1 < · · · < sw} and set

C ′′ = {� : the rb-pair starting with xs� is stable}.

One may check that #C ′+#C ′′ = a+b. Setting C = C ′∪{c+� : � ∈ C ′′} ⊆ [c+w],
we have produced from the given chainX of type (a, b) a tuple ϕ(X) := (w,A,B,C).
It’s clear that ϕ is injective. In particular, if two chains X and X ′ have ϕ(X) =
ϕ(X ′), then they must have the same value set, as both are recovered by C∩[c], and
the same locations of rb-pairs, as both are determined by A and B, as well as the
same locations of stable rb-pairs, as these locations are determined by C \ (C ∩ [c]).
All this data completely determines the red and blue colored integers in the chains
X and X ′; hence they are the same chain.

We now check that ϕ is surjective. Fix (w,A,B,C) a 4-tuple of the desired
form. Write A = {i1 < · · · < iw} ⊆ [a] and B = {j1 < · · · < jw} ⊆ [b]. Also
decompose C ′ = C ∩ [c] = {c1 < · · · < ca+b−f} and let C ′′ = {s1 < · · · < sf} where
C ∩ [c + 1, c + j] = {c + s1 < · · · < c + sf}. We now build a chain X = (x1 <
· · · < xa+b) of type (a, b) with ϕ(X) = (w,A,B,C). To determine the chain we
first construct the coloring; that is, we describe a sequence of a+ b colored buckets
into which we will place values. This is determined by the sets A and B. Color
the first j1 − 1 buckets blue, then the next i1 buckets red, the next j2 − j1 buckets
blue, the next i2 − i1 buckets red, and so on. Finishing this, the sequence may be
too short; however we know that there will be no more rb-pairs, so we fill in with
the remaining number of blue buckets, then the remaining number of red buckets.

Now it suffices to fill in the values. The coloring has been chosen so that the i�th
red bucket is part of an rb-pair for 1 ≤ � ≤ w, and similarly the j�th blue bucket
is part of an rb-pair. Use the set C ′′ to mark the red component of the stable rb-
pairs. Now start placing values in buckets in order, and repeat values on the stable
rb-pairs so marked. This produces the chain X. To see that ϕ(X) = (w,A,B,C)
note that A and B characterize the rb-pairs of X, and that C consists precisely of
the values and the encoded locations of the stable rb-pairs by construction. �

Example 3.4. Fix a = 7, b = 8, and c = 15. As is typical with combinatorial
proofs, it is instructive to see the functions in action in an example. Consider the
(7, 8) chain

1r < 2r < 3r < 4b < 5r < 5b < 6b < 7b < 8b < 9r < 10r < 10b < 11b < 12r < 13b,

where we denote a red number nr with value n and a blue number nb with value
n. Realize this chain as x1 < · · · < x15 colored integers.
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The red indices are {1 < 2 < 3 < 5 < 10 < 11 < 14}, and the blue indices are
{4 < 6 < 7 < 8 < 9 < 12 < 13 < 15}. Writing the former set as {i1 < · · · < i7}
and the latter as {j1 < · · · < j8}, we have the set A of red subindices of rb-pairs is
{3 < 4 < 6 < 7} and B the set of blue subindices of rb-pairs is {1 < 2 < 6 < 8}.
So w = 4. The set C ′ is the set of values {1, . . . , 13}. The set C ′′ is the set of those
indices in A which arise for stable rb-pairs, in this case C ′′ = {2, 3}. Shifting these
by c = 15 we have C = {1, . . . , 13, 17, 18} and we have ϕ(X) = (4, A,B,C).

Continuing with a = 7, b = 8, and c = 15, we compute ψ(2, A,B,C) where A =
{3 < 5}, B = {1 < 2}, and C = {1, . . . , 14, 17} ⊂ [17]. To calculate ψ(2, A,B,C)
we split C into the honest values {1, . . . , 14} and the index 17 − 15 = 2 which
corresponds to a unique stable rb-pair. We first determine the pattern of colors.
Since B = {1 < 2}, the first blue number is part of an rb-pair, which means the
sequence starts with red numbers. Since A = {3 < 5}, the third red number is
the earliest one that is part of an rb-pair, so our sequence starts r < r < r < b.
The second blue number is also part of an rb-pair, and so we must switch back
to red numbers until we reach the 5th red number, so our sequence looks like
r < r < r < b < r < r < b. There are no more rb-pairs, and so we must finish
writing blue numbers and then end with the remaining red numbers: r < r < r <
b < r < r < b < b < b < b < b < b < b < r < r. We have that the values of the
elements in our chain are non-increasing, the 2nd rb-pair is the only stable rb-pair,
and the values of the 15 colored integers include all values in [14]. Hence our chain
of type (7, 8) is

1r < 2r < 3r < 4b < 5r < 6r < 6b < 7b < 8b < 9b < 10b < 11b < 12b < 13r < 14r.

With Lemma 3.3 in hand, we draw out a few immediate consequences, which
will be applied in the main counting result, Theorem 3.8.

Corollary 3.5. For a, b, c ∈ N,
c∑

i=0

(
i

a

)(
i

b

)
=

∑
j

(
c+ j + 1

a+ b+ 1

)(
a

j

)(
b

j

)
.

Proof. By Lemma 3.3 and the Hockeystick Lemma,

c∑
i=0

(
i

a

)(
i

b

)
=

c∑
i=0

∑
j

(
i+ j

a+ b

)(
a

j

)(
b

j

)

=
∑
j

(
c∑

i=0

(
i+ j

a+ b

))(
a

j

)(
b

j

)
=

∑
j

(
c+ j + 1

a+ b+ 1

)(
a

j

)(
b

j

)
. �

Corollary 3.6. For c, u, u′, v, v′ ∈ N,

c∑
i=0

(
t+ i

u

)(
v + i

w

)
=

∑
a

∑
b

∑
j

(
t

u− a

)(
v

w − b

)(
c+ j + 1

a+ b+ 1

)(
a

j

)(
b

j

)
.

Proof. The sum
∑c

i=0

(
t+i
u

)(
v+i
w

)
is the coefficient of xuyw in the polynomial

c∑
i=0

(x+ 1)i+t(y + 1)i+v = (x+ 1)t(y + 1)v
c∑

i=0

(x+ 1)i(y + 1)i.
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The coefficient of xuyw in the right hand side is, by Corollary 3.5,

∑
a

∑
b

(
t

u− a

)(
v

w − b

) c∑
i=0

(
i

a

)(
i

b

)

=
∑
a

∑
b

∑
j

(
t

u− a

)(
v

w − b

)(
c+ j + 1

a+ b+ 1

)(
a

j

)(
b

j

)
. �

The final ingredient is the following lemma, which offers a direct count of the
type of tuples we are interested in. Its proof is a direct application of [RS15, Lem.
2.5], inclusion-exclusion, and Pascal’s identity and is left to the reader.

Lemma 3.7. Fix natural numbers v, d, and q. The number of tuples (z1, . . . , zv) ∈
Zv

≥0 with
∑

i zi = d and zi < q is

∑
i

(−1)i
(
v

i

)(
d− iq + v − 1

v − 1

)
.

Armed with this, we obtain a closed form for T (m,n, r, q) and U(m,n, r, q).
These closed forms involve the monus operation a �

b = max{a− b, 0}.

Theorem 3.8. For fixed d ∈ N,

T (m,n, r, q)

=
∑
i

∑
a

∑
b

∑
j

(−1)i
(
m

i

)(
m− 1

m− 1− a

)(
iq + n− 1

n− 1− b

)(
r − iq + j

a+ b+ 1

)(
a

j

)(
b

j

)

and

U(m,n, r, q) =
∑
i

∑
j

∑
a

∑
b

∑
�

(−1)i+j

(
m

i

)(
n

j

)(
(j � i)q +m− 1

m− 1− a

)

×
(
(i � j)q + n− 1

n− 1− b

)(
r −max{i, j}q + �

a+ b+ 1

)(
a

�

)(
b

�

)

Proof. Both claims are proved using similar techniques. By Lemma 3.7, the number
of m-tuples (x1, . . . , xm) such that

∑
i xi = d and xi < q for all i is

∑
i

(−1)i
(
m

i

)(
d− iq +m− 1

m− 1

)
,

and the number of n-tuples (y1, . . . , yn) with
∑

j yj = d is
(
d+n−1
n−1

)
. Therefore,

T (m,n, r, q) =

r−1∑
d=0

∑
i

(−1)i
(
m

i

)(
d− iq +m− 1

m− 1

)(
d+ n− 1

n− 1

)

=
∑
i

(−1)i
(
m

i

) r−1∑
d=0

(
d− iq +m− 1

m− 1

)(
d+ n− 1

n− 1

)
.
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Applying Corollary 3.6 with c = r − iq − 1, t = u = m − 1, v = iq + n − 1, and
w = n− 1, we obtain that

r−1∑
d=0

(
d− iq +m− 1

m− 1

)(
d+ n− 1

n− 1

)
=

r−iq−1∑
d′=0

(
d′ +m− 1

m− 1

)(
d′ + iq + n− 1

n− 1

)

=
∑
a

∑
b

∑
j

(
m− 1

m− 1− a

)(
iq + n− 1

n− 1− b

)(
r − iq + j

a+ b+ 1

)(
a

j

)(
b

j

)
.

Thus,

T (m,n, r, q)

=
∑
i

∑
a

∑
b

∑
j

(−1)i
(
m

i

)(
m− 1

m− 1− a

)(
iq + n− 1

n− 1− b

)(
r − iq + j

a+ b+ 1

)(
a

j

)(
b

j

)
.

Similarly, we find an equivalent expression for U . We have that

U(m,n, r, q) =
r−1∑
d=0

∑
i

∑
j

(−1)i+j

(
m

i

)(
n

j

)(
d− iq +m− 1

m− 1

)(
d− jq + n− 1

n− 1

)
.

If i ≥ j, then letting c = r − iq − 1, t = u = m − 1, v = iq − jq + n − 1, and
w = n− 1, we have that

r−1∑
d=0

(
d− iq +m− 1

m− 1

)(
d− jq + n− 1

n− 1

)

=

r−iq−1∑
d′=0

(
d′ +m− 1

m− 1

)(
d′ + iq − jq + n− 1

n− 1

)

=
∑
a

∑
b

∑
�

(
m− 1

m− 1− a

)(
iq − jq + n− 1

n− 1− b

)(
r − iq + �

a+ b+ 1

)(
a

�

)(
b

�

)
.

By a symmetric argument, if i < j, then

r−1∑
d=0

(
d− iq +m− 1

m− 1

)(
d− jq + n− 1

n− 1

)

=
∑
a

∑
b

∑
�

(
jq − iq +m− 1

m− 1− a

)(
n− 1

n− 1− b

)(
r − jq + �

a+ b+ 1

)(
a

�

)(
b

�

)
.

Therefore,

U(m,n, r, q) =
∑
i

∑
j

∑
a

∑
b

∑
�

(−1)i+j

(
m

i

)(
n

j

)(
(j � i)q +m− 1

m− 1− a

)

×
(
(i � j)q + n− 1

n− 1− b

)(
r −max{i, j}q + �

a+ b+ 1

)(
a

�

)(
b

�

)
. �

We are now set to put this all together to give a closed form for the desired
length function.

Theorem 3.9. Fix k a field, p an integer, and q a p-power. Let X be an m × n-
matrix of variables, let m be the homogeneous maximal ideal of k[X], and let I2(X)
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be the ideal of 2× 2-minors. Let s ∈ R>0 such that sq ∈ Z, and set

R(m,n, s, q) :=
∑
a

∑
b

∑
�

(
m− 1

a

)(
n− 1

b

)(
sq + �

a+ b+ 1

)(
a

�

)(
b

�

)
,

S(m,n, s, q) :=
∑
i>0

∑
j>0

∑
a

∑
b

∑
�

(−1)i+j

(
m

i

)(
n

j

)(
(j � i)q +m− 1

m− 1− a

)

×
(
(i � j)q + n− 1

n− 1− b

)(
(s−max{i, j})q + �

a+ b+ 1

)(
a

�

)(
b

�

)
.

The length λ
(

k[X]
m�sq�+m[q]+I2(X)

)
= R(m,n, s, q)− S(m,n, s, q) is eventually a poly-

nomial in q for all s.

Proof. First use Corollary 2.6 to give a k-basis for the vector space k[X]/(m�sq� +
m[q] + I2(X)) consisting of monomials of bounded degree and with restricted row
and column sums. This reduces the calculation to the functions T and U . In
particular, by applying Lemma 3.7 and Theorem 3.8, we have

λ

(
k[X]

msq +m[q] + I2(X)

)
= T (m,n, sq, q) + T (n,m, sq, q)− U(m,n, sq, q)

=
∑
i

∑
a

∑
b

∑
�

(−1)i
(
m

i

)(
m− 1

m− 1− a

)(
iq + n− 1

n− 1− b

)(
(s− i)q + �

a+ b+ 1

)(
a

�

)(
b

�

)

+
∑
j

∑
a

∑
b

∑
�

(−1)j
(
n

j

)(
jq +m− 1

m− 1− a

)(
n− 1

n− 1− b

)(
(s− j)q + �

a+ b+ 1

)(
a

�

)(
b

�

)

−
∑
i

∑
j

∑
a

∑
b

∑
�

(−1)i+j

(
m

i

)(
n

j

)(
(j � i)q +m− 1

m− 1− a

)(
(i � j)q + n− 1

n− 1− b

)

×
(
(s−max{i, j})q + �

a+ b+ 1

)(
a

�

)(
b

�

)

=
∑
a

∑
b

∑
�

(
m− 1

a

)(
n− 1

b

)(
sq + �

a+ b+ 1

)(
a

�

)(
b

�

)

−
∑
i>0

∑
j>0

∑
a

∑
b

∑
�

(−1)i+j

(
m

i

)(
n

j

)(
(j

�

i)q +m− 1

m− 1− a

)(
(i

�

j)q + n− 1

n− 1− b

)

×
(
(s−max{i, j})q + �

a+ b+ 1

)(
a

�

)(
b

�

)
,

where the last equality follows as the i = 0 summand of U(m,n, sq, q) is precisely
T (n,m, sq, q) and the j = 0 summand of U(m,n, sq, q) is precisely T (m,n, sq, q)
and so they cancel in the sum, except for the summand

∑
a

∑
b

∑
�

(
m− 1

a

)(
n− 1

b

)(
sq + �

a+ b+ 1

)(
a

�

)(
b

�

)
,

which only appears once in U(m,n, sq, q) when i = 0 and j = 0, but appears twice
in T (m,n, sq, q) + T (n,m, sq, q). �
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3.1. Examples. Fix R = k[X]/I2(X) where X is an m × n-matrix. We conclude
with a few examples using Theorem 3.8 and use this to calculate es(R) for small
values of m and n.

Example 3.10. Suppose m = n = 2 and assume throughout that s ∈ Z[p−1] and

so sq is always an integer for q  0. We calculate λ
(

k[X]
msq+m[q]+I2(X)

)
by calculating

R(2, 2, s, q) and S(2, 2, s, q). The latter depends on the integer part of s.

We always have R(2, 2, s, q) = s3q3

3 + s2q2

2 + sq
6 . For s < 1, S(2, 2, s, q) = 0, and

so λ
(

k[X]
msq+m[q]+I2(X)

)
= s3q3

3 + s2q2

2 + sq
6 . For 1 ≤ s < 2 we have

S(2, 2, s, q) =
4

3
(s− 1)3q3 + 2(s− 1)2q2 +

2

3
(s− 1)q.

Likewise, for s ≥ 2 we have

S(2, 2, s, q) =

(
s3

3
− 4

3

)
q3 +

s2

2
q2 +

(
s

6
+

1

3

)
q.

Putting this together yields a closed form for the length in question:

λ

(
k[X]

msq +m[q] + I2(X)

)

=

⎧⎪⎪⎨
⎪⎪⎩

s3

3 q
3 + s2

2 q
2 + s

6q if 0 < s ≤ 1,(
s3

3 − 4
3 (s− 1)3

)
q3 +

(
s2

2 − 2(s− 1)2
)
q2 +

(
s
6 − 2

3 (s− 1)
)
q if 1 < s ≤ 2,

4
3q

3 − 1
3q if s > 2.

Recalling that

2Hs(3)− 2Hs−1(3) =

{
1
3s

3 if s < 1,
1
3s

3 − 4
3 (s− 1)3 if 1 ≤ s < 2,

we have shown that

hs(m) = lim
q→∞

1

q3
λ

(
k[X]

msq +m[q] + I2(X)

)
=

{
2Hs(3)− 2Hs−1(3) if s ≤ 2,
4
3 if s ≥ 2,

and thus

es(R) =

{
2− 2Hs−1(3)

Hs(3)
if s ≤ 2,

4
3Hs(3)

if s ≥ 2.

Example 3.11. Now fix m = 2 and n = 3. We have R(2, 3, s, q) = s4

8 q
4 + 5s3

12 q
3 +

3s2

8 q2 + s
12q and

S(2, 3, s, q)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if 0 < s < 1,
3
4 (s− 1)4q4 + 5

2 (s− 1)3q3 + 9
4 (s− 1)2q2 + 1

2 (s− 1)q if 1 ≤ s < 2,
1
4 (4s

3 − 9s2 + 7)q4 + 1
4 (9s

2 − 9s− 8)q3 + 1
4 (5s− 1)q2 + 1

2q if 2 ≤ s < 3,

(−13
8 + s4

8 )q
4 + ( 14 + 5

12s
3)q3 + ( 18 + 3

8s
2)q2 + ( 14 + s

12 )q if 3 ≤ s,
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and we have the length λ
(

k[X]
msq+m[q]+I2(X)

)
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s4

8 q
4 + 5s3

12 q
3 + 3s2

8 q2 + s
12q if 0 < s < 1,

( s
4

8 − 3
4 (s− 1)4)q4 + ( 5s

3

12 − 5
2 (s− 1)3)q3 + ( 3s

2

8 − 9
4 (s− 1)2)q2

+( s
12 − 1

2 (s− 1))q if 1 ≤ s < 2,

( s
4

8 − 1
4 (4s

3 − 9s2 + 7))q4 + ( 5s
3

12 − 1
4 (9s

2 − 9s− 8))q3

+( 3s
2

8 − 1
4 (5s− 1))q2 + ( s

12 − 1
2 )q if 2 ≤ s < 3,

13
8 q4 − 1

4q
3 − 1

8q
2 − 1

4q if 3 ≤ s.

We have that

hs(m) = lim
q→∞

1

q4
λ

(
k[X]

msq +m[q] + I2(X)

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s4

8 if 0 < s < 1,

( s
4

8 − 3
4 (s− 1)4) if 1 ≤ s < 2,

( s
4

8 − 1
4 (4s

3 − 9s2 + 7)) if 2 ≤ s < 3,
13
8 if 3 ≤ s.

In terms of the normalizing factors Hs one may write this as

es(R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3 if 0 < s < 1,

3− 6Hs−1(4)
Hs(4)

if 1 ≤ s < 2,
13

8Hs(4)
− H3−s(4)+sH3−s(3)

Hs(4)
if 2 ≤ s < 3,

13
8Hs(4)

if 3 ≤ s.
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