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COMPLEX POWERS FOR CONE DIFFERENTIAL OPERATORS

AND THE HEAT EQUATION ON MANIFOLDS

WITH CONICAL SINGULARITIES

NIKOLAOS ROIDOS

(Communicated by Joachim Krieger)

Abstract. We obtain left and right continuous embeddings for the domains

of the complex powers of sectorial B-elliptic cone differential operators. We
apply this result to the heat equation on manifolds with conical singularities
and provide asymptotic expansions of the unique solution close to the conical
points. We further show that the decomposition of the solution in terms of
asymptotics spaces, i.e., finite-dimensional spaces that describe the domains
of the integer powers of the Laplacian and determined by the local geometry
around the singularity, is preserved under the evolution.

1. Introduction

The domains of the complex powers of sectorial operators play an important role
in the regularity theory of partial differential equations (PDEs). Concerning the
theory of maximal regularity, under elementary embeddings (see e.g. [2, (I.2.5.2)]
and [2, (I.2.9.6)]), they determine the interpolation spaces of Banach couples ap-
pearing in the evolution of linear and quasilinear parabolic problems (see e.g.
[1, Theorem 7.1], [4, Theorem 2.7], or [7, Theorem 2.1]). In the case of usual
elliptic differential operators, the domains of the complex powers can be deter-
mined by standard pseudodifferential theory, and in general they are described by
fractional Sobolev spaces. Of particular interest is the case of degenerate differ-
ential operators, where such knowledge can be applied to the study of PDEs on
singular spaces.

In this article we are interested in conically degenerate operators. This class
contains the naturally appearing operators on manifolds with conical singularities.
It is well known (see e.g. [10], [14], [19], or [20]) that a cone differential operator
which satisfies certain ellipticity assumptions (i.e., being B-elliptic) and is defined
as an unbounded operator on an arbitrary (weighted) Mellin-Sobolev space has
several closed extensions, called realizations, which differ by a finite-dimensional
space, called asymptotics space. The structure of the asymptotics space is standard
and is determined by the coefficients of the operator close to the singularity.

Therefore, the description under continuous embeddings of the complex power
domains of sectorial B-elliptic cone differential operators is related to the inter-
polation between Mellin-Sobolev spaces and direct sums of Mellin-Sobolev spaces
and asymptotics spaces. We proceed to such an estimate by using only elementary
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interpolation theory and basic facts concerning the description of the maximal do-
main of a B-elliptic cone differential operator. Then, embeddings for the domains of
the complex powers are recovered by standard theory in the case of sectorial closed
extension. For the property of sectoriality, we point out the associated theory and
provide an example related to the Laplacian on a conic manifold.

As a next step, we apply the above result to the theory of degenerate parabolic
PDEs. In order to emphasize concrete results, we deal only with linear theory. More
precisely, we consider the heat equation on a manifold with conical singularities.
However, our complex power result can be applied to non-linear problems on such
spaces, such as e.g. the porous medium equation or the Cahn-Hilliard equation,
and provide information concerning the asymptotic behavior of the solutions close
to the singularity, as we remark later on.

Concerning now the heat equation on a conic manifold, instead of choosing as
usual an appropriate realization of the Laplacian on a Mellin-Sobolev space as e.g.
in [5], [8], [17] and [19], we pick up a closed extension by going arbitrarily high
to the power scale of a specific R-sectorial realization of the Laplacian. In this
way, by using standard maximal Lq-regularity theory, we show well-posedness of
the problem on spaces consisting of sums of Mellin-Sobolev spaces and asymptotics
spaces.

As a consequence, it is shown that an appropriate decomposition of the initial
data in terms of a Mellin-Sobolev space part and an asymptotics space part is
preserved under the evolution. Furthermore, the asymptotics space expansion of
the solution can become arbitrarily long and hence can provide arbitrarily sharp
information concerning the asymptotic behavior of the solution close to the conical
tips, depending on the regularity of the right hand side of the heat equation. Hence,
e.g. in the case of the homogeneous problem, the complete asymptotic expansion of
the solution close to the singularity is recovered, which turns out to be dependent
on the local geometry of the cone.

2. Basic maximal Lq
-regularity theory

for linear parabolic problems

Let X1
d
↪→ X0 be a continuously and densely injected complex Banach couple.

We start with a basic decay property of the resolvent of an operator which allows
us to define complex powers.

Definition 2.1 (Sectorial operator). Let θ ∈ [0, π) and denote by P(θ) the class
of all closed densely defined linear operators A in X0 such that

Sθ = {λ ∈ C | | argλ| ≤ θ}∪{0} ⊂ ρ(−A) and (1+ |λ|)‖(A+λ)−1‖L(X0) ≤ KA,θ,

λ ∈ Sθ, for some KA,θ ≥ 1 that is called the sectorial bound of A and depends on A
and θ. The elements in P(θ) are called (invertible) sectorial operators of angle θ.

If A ∈ P(0), then A ∈ P(ψ) for certain ψ ∈ (0, π), as we can see from [2,
(III.4.6.4)] and [2, (III.4.6.5)]. For any ρ ≥ 0 and θ ∈ (0, π), let the positively
oriented path

Γρ,θ = {re−iθ ∈ C | r ≥ ρ} ∪ {ρeiφ ∈ C | θ ≤ φ ≤ 2π − θ} ∪ {re+iθ ∈ C | r ≥ ρ}.
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Given any A ∈ P(θ), θ ∈ (0, π), we can define its complex powers Az for Re(z) < 0
by using the Dunford integral formula, namely

Az =
1

2πi

∫
Γρ,θ

(−λ)z(A+ λ)−1dλ ∈ L(X0),

for certain ρ > 0 due to [2, (III.4.6.4)]. The above family together with A0 = I is a
strongly continuous analytic semigroup on X0 (see e.g. [2, Theorem III.4.6.2] and
[2, Theorem III.4.6.5]). Moreover, it is easy to verify that each Az is injective for
Re(z) < 0. Then, we define Aw = (A−w)−1 for Re(w) > 0, which are in general
unbounded operators (see e.g. [2, (III.4.6.12)]). Finally, the imaginary powers of
A are defined in a similar way (see e.g. [2, (III.4.6.21)]). We refer to [2, Section
III.4.6] for further details on the complex powers of sectorial operators.

Recall next the notion of R-sectoriality, a boundedness condition for the resolvent
of an operator stronger than the standard sectoriality, which plays a fundamental
role in the theory of maximal Lq-regularity.

Definition 2.2. Let {εk}∞k=1 be the sequence of the Rademacher functions and
θ ∈ [0, π). An operator A ∈ P(θ) is called the R-sectorial of angle θ if for any
choice of λ1, ..., λN ∈ Sθ\{0} and x1, ..., xN ∈ X0, N ∈ N\{0}, we have that

‖
N∑

k=1

εkλk(A+ λk)
−1xk‖L2(0,1;X0) ≤ RA,θ‖

N∑
k=1

εkxk‖L2(0,1;X0),

for some constant RA,θ ≥ 1 that is called the R-sectorial bound of A and depends
on A and θ.

For any q ∈ (1,∞) and φ ∈ (0, 1), denote by Lq(0, T ;X0) the X0-valued Lq-
space and by (·, ·)φ,q the real interpolation functor of exponent φ and parameter q.
Consider the abstract linear parabolic problem

u′(t) +Au(t) = f(t), t ∈ (0, T ),(2.1)

u(0) = u0,(2.2)

where q ∈ (1,∞), T > 0 is finite, f ∈ Lq(0, T ;X0), u0 ∈ (X1, X0) 1
q ,q

, and −A :

X1 → X0 is the infinitesimal generator of a bounded analytic semigroup on X0.
The operator A has maximal Lq-regularity if for some q (and hence for all, according
to a result by G. Dore) we have that for any f ∈ Lq(0, T ;X0) and u0 ∈ (X1, X0) 1

q ,q

there exists a unique u ∈ W 1,q(0, T ;X0) ∩ Lq(0, T ;X1) solving (2.1)-(2.2) that
depends continuously on the data f , u0. Finally, recall the standard embedding of
the maximal Lq-regularity space (see e.g. [2, Theorem III.4.10.2]), namely

W 1,q(0, T ;X0) ∩ Lq(0, T ;X1) ↪→ C([0, T ]; (X1, X0) 1
q ,q

).(2.3)

If we restrict to Banach spaces belonging to the class of UMD (i.e., having the
unconditionality of martingale differences property; see [2, Section III.4.4]), then R-
sectoriality implies maximal Lq-regularity (it actually characterizes this property in
UMD spaces due to [22, Theorem 4.2]) as we can see from the following fundamental
result.

Theorem 2.3 (Kalton and Weis). In a UMD Banach space any R-sectorial oper-
ator of angle θ with θ > π

2 has maximal Lq-regularity.

Proof. This is [13, Theorem 6.5] for the case of u0 = 0. For the general case see
e.g. [4, Theorem 2.7]. �
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Finally, we note that the property of maximal Lq-regularity is preserved on power
scales of R-sectorial operators in UMD spaces, as we deduce from the following
elementary result.

Lemma 2.4. Let X0 be a complex Banach space and let A : D(A) → X0 be an
R-sectorial operator of angle θ ∈ [0, π). For any k ∈ N\{0} let

Ak ∈ L(D(Ak),D(Ak−1)) defined by Ak : x �→ Ax,

where

D(Ak) = (D(Ak), ‖Ak · ‖X0
) = ({y ∈ D(Ak−1) |Ay ∈ D(Ak−1)}, ‖Ak · ‖X0

).

Then, Ak is also R-sectorial of angle θ.

Proof. It is easy to see that ρ(−A) ⊆ ρ(−Ak) and that (A+ λ)−1|D(Ak−1) = (Ak +

λ)−1 for all λ ∈ ρ(−A). Let λ1, ..., λN ∈ Sθ\{0} and x1, ..., xN ∈ X0, N ∈ N\{0}.
By the R-sectoriality of A1 we have that

‖
N∑
i=1

εiλi(Ak + λi)
−1xi‖L2(0,1;D(Ak−1))

= ‖
N∑
i=1

εiλi(A+ λi)
−1Ak−1xi‖L2(0,1;X0)

≤ C‖
N∑
i=1

εiA
k−1xi‖L2(0,1;X0)

= C‖
N∑
i=1

εixi‖L2(0,1;D(Ak−1))

for some constant C ≥ 1. �

3. Complex powers for cone differential operators

Let B be a smooth (n + 1)-dimensional, n ≥ 1, manifold with possibly discon-
nected closed (i.e., compact without boundary) boundary ∂B. Endow B with a
Riemannian metric g which in a collar neighborhood [0, 1) × ∂B of the boundary
admits the form

g = dx2 + x2h(x, y),(3.4)

where (x, y) ∈ [0, 1)×∂B are local coordinates and x �→ h(x, y) is a smooth up to x =
0 family of Riemannian metrics on the cross section ∂B that does not degenerate up
to x = 0. We call B = (B, g) a conic manifold or manifold with conical singularities
which are identified with the set {0} × ∂B. When h is independent of x we have

straight conical tips; otherwise the tips are warped. Finally, let ∂B =
⋃kB

i=1 ∂Bi, for
certain kB ∈ N\{0}, where ∂Bi are smooth, closed and connected.

The naturally appearing differential operators on B degenerate and belong to
the class of cone differential operators or conically degenerate operators. A cone
differential operator A of order μ ∈ N is a μ-th order differential operator with
smooth coefficients in the interior B◦ of B such that when it is restricted on the
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collar part (0, 1)× ∂B it admits the following form:

A = x−μ

μ∑
k=0

ak(x)(−x∂x)
k, where ak ∈ C∞([0, 1); Diffμ−k(∂B)).(3.5)

If ak, k ∈ {0, ..., μ}, do not depend on x close to zero we say that A has x-
independent coefficients.

We associate two special symbols to a cone differential operator. If (ξ, η) are
the corresponding covariables to the local coordinates (x, y) ∈ [0, 1)× ∂B near the
boundary, then we define the rescaled symbol by

σ̃μ
ψ(A)(y, η, ξ) =

μ∑
k=0

σμ−k
ψ (ak)(0, y, η)(−iξ)k ∈ C∞((T ∗∂B × R)\{0}).

Furthermore, the holomorphic family of differential operators defined on the bound-
ary,

σμ
M (A)(λ) =

μ∑
k=0

ak(0)λ
k : C → L(Hs

p(∂B), H
s−μ
p (∂B)),

is called the conormal symbol of A, where ∂B = (∂B, h(0)), s ∈ R, p ∈ (1,∞)
and Hs

p(∂B) denotes the usual Sobolev space. We may then extend the notion of
ellipticity to the case of conically degenerate differential operators as follows.

Definition 3.1. A cone differential operator A is called B-elliptic if its standard
principal pseudodifferential symbol σμ

ψ(A) is invertible on T ∗B◦\{0} and σ̃μ
ψ(A) is

also pointwise invertible.

Cone differential operators act naturally on scales of weighted Mellin-Sobolev
spacesHs,γ

p (B), s, γ ∈ R, p ∈ (1,∞). Let ω ∈ C∞(B) be a fixed cut-off function near
the boundary, i.e., a smooth non-negative function on B with ω = 1 near {0} × ∂B
and ω = 0 on B\([0, 1) × ∂B). Moreover, we assume that in local coordinates
(x, y) ∈ [0, 1) × ∂B, ω depends only on x. Denote by C∞

c the space of smooth
compactly supported functions.

Definition 3.2. For any γ ∈ R consider the map

Mγ : C∞
c (R+ × R

n) → C∞
c (Rn+1) defined by u(x, y) �→ e(γ−

n+1
2 )xu(e−x, y).

Further, take a covering κi : Ui ⊆ ∂B → Rn, i ∈ {1, ..., N}, N ∈ N\{0}, of ∂B by
coordinate charts and let {φi}i∈{1,...,N} be a subordinated partition of unity. For
any s ∈ R and p ∈ (1,∞) let Hs,γ

p (B) be the space of all distributions u on B◦ such
that

‖u‖Hs,γ
p (B) =

N∑
i=1

‖Mγ(1⊗ κi)∗(ωφiu)‖Hs
p(R

n+1) + ‖(1− ω)u‖Hs
p(B)

is defined and finite, where ∗ refers to the push-forward of distributions. The
space Hs,γ

p (B) is independent of the choice of the cut-off function ω, the covering
{κi}i∈{1,...,N}, and the partition {φi}i∈{1,...,N}.

Hence, a cone differential operator A of order μ induces a bounded map

A : Hs+μ,γ+μ
p (B) → Hs,γ

p (B).
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Note that if s ∈ N, then Hs,γ
p (B) is the space of all functions u in Hs

p,loc(B
◦) such

that near the boundary

x
n+1
2 −γ(x∂x)

k∂α
y (ω(x)u(x, y)) ∈ Lp

(
[0, 1)× ∂B,

√
det[h(x)]

dx

x
dy

)
, k + |α| ≤ s.

We recall next some basic facts concerning the domain of a B-elliptic cone dif-
ferential operator A. Further details can be found in [6], [10], [14], [18], [19], or
[20]. We regard A as an unbounded operator in Hs,γ

p (B), s, γ ∈ R, p ∈ (1,∞), with
domain C∞

c (B◦). The domain of the minimal extension (i.e., the closure) Amin of
A is given by

D(Amin) =

{
u ∈

⋂
ε>0

Hs+μ,γ+μ−ε
p (B) |x−μ

μ∑
k=0

ak(0)(−x∂x)
k(ωu) ∈ Hs,γ

p (B)

}
.

If in addition the conormal symbol of A is invertible on the line {λ ∈ C |Re(λ) =
n+1
2 − γ − μ}, then we have that

D(Amin) = Hs+μ,γ+μ
p (B).

Concerning the domain of the maximal extension Amax of A, which as usual is
defined by

D(Amax) =

{
u ∈ Hs,γ

p (B) |Au ∈ Hs,γ
p (B)

}
,

we have that

D(Amax) = D(Amin)⊕ EA,γ .(3.6)

Here EA,γ is a finite-dimensional space independent of s that is called asymptotics
space, which consists of linear combinations of C∞(B◦) functions that vanish on
B\([0, 1) × ∂B), and in local coordinates (x, y) on the collar part (0, 1) × ∂B they
are of the form ω(x)c(y)x−ρ logm(x) where c ∈ C∞(∂B), ρ ∈ C, and m ∈ N.

For the x−1 powers ρ describing EA,γ we have that ρ ∈ QA,γ , where QA,γ is a
finite set of points in the strip{

λ ∈ C |Re(λ) ∈ [
n+ 1

2
− γ − μ,

n+ 1

2
− γ)

}
(3.7)

that is determined explicitly by the poles of the recursively defined family of symbols

g0 = f−1
0 , gk = −(T−kf−1

0 )
k−1∑
i=0

(T−ifk−i)gi, k ∈ {1, ..., μ− 1},

where

fν(λ) =
1

ν!

μ∑
i=0

(∂ν
xai)(0)λ

i, ν ∈ {0, ..., μ− 1}, λ ∈ C,

and by Tσ, σ ∈ R, we denote the action (Tσf)(λ) = f(λ + σ) (see e.g. [19, (2.7)-
(2.8)]). The logarithmic powers m are related to the orders of the above poles.

If A has x-independent coefficients, then QA,γ coincides with the set of poles of
(σμ

M (A)(·))−1 in the strip (3.7) and

EA,γ =
⊕

ρ∈QA,γ

Eρ,(3.8)
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where Eρ, ρ ∈ QA,γ , is a finite-dimensional space independent of s consisting of
C∞(B◦) functions that vanish on B\([0, 1)×∂B), and in local coordinates (x, y) on
the collar part (0, 1)× ∂B they are of the form

ω(x)x−ρ

mρ∑
i=0

ci(y) log
i(x)(3.9)

with ci ∈ C∞(∂B) and certain mρ ∈ N depending on the order of ρ.
Under (3.8), let the closed extension A of A in Hs,γ

p (B) be given by

D(A) = D(Amin)⊕
⊕

ρ∈Q
A,γ

Eρ,(3.10)

where Q
A,γ

⊆ QA,γ is a given subset and Eρ is a subspace of Eρ. The maximal

domain structure, together with standard properties of interpolation spaces, implies
the following result concerning real interpolation between Mellin-Sobolev spaces and
direct sums of Mellin-Sobolev spaces and asymptotics spaces, which is inspired by
[17, Lemma 5.2].

Theorem 3.3. Let s, γ ∈ R, θ ∈ (0, 1), p, q ∈ (1,∞), A be B-elliptic with x-
independent coefficients, and A be the closed extension (3.10). Then, for any ε > 0
the following embeddings hold:

Hs+θμ+ε,γ+θμ+ε
p (B) +

⊕
ρ∈Q

A,γ

Eρ

↪→ (Hs,γ
p (B),Hs+μ,γ+μ

p (B)⊕
⊕

ρ∈Q
A,γ

Eρ)θ,q

↪→ Hs+θμ−ε,γ+θμ−ε
p (B) +

⊕
ρ∈Q

A,γ

Eρ.

Proof. By [17, Lemma 3.6], we have that

Hs+θμ+ε,γ+θμ+ε
p (B) ↪→ (Hs,γ

p (B),Hs+μ,γ+μ
p (B))θ,q.(3.11)

Standard properties of interpolation spaces (see e.g. [11, Theorem B.2.3]) imply
that

(Hs,γ
p (B),Hs+μ,γ+μ

p (B))θ,q

↪→ (Hs,γ
p (B),Hs+μ,γ+μ

p (B)⊕
⊕

ρ∈Q
A,γ

Eρ)θ,q.(3.12)

Furthermore, ⊕
ρ∈Q

A,γ

Eρ ↪→ (Hs,γ
p (B),Hs+μ,γ+μ

p (B)⊕
⊕

ρ∈Q
A,γ

Eρ)θ,q.(3.13)

Therefore, the first embedding follows by (3.11), (3.12), and (3.13).
Concerning the second embedding, since A maps the space

⊕
ρ∈Q

A,γ

Eρ into

Hs,γ
p (B), we obtain that

A : (Hs,γ
p (B),Hs+μ,γ+μ

p (B)⊕
⊕

ρ∈Q
A,γ

Eρ)θ,q

→ (Hs−μ,γ−μ
p (B),Hs,γ

p (B))θ,q ↪→ Hs+(θ−1)μ−ε,γ+(θ−1)μ−ε
p (B),
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where we have used [17, Lemma 3.5] for the last embedding. Hence, the interpola-
tion space

(Hs,γ
p (B),Hs+μ,γ+μ

p (B)⊕
⊕

ρ∈Q
A,γ

Eρ)θ,q

embeds to the maximal domain of A in Hs+(θ−1)μ−ε,γ+(θ−1)μ−ε
p (B), i.e.,

(Hs,γ
p (B),Hs+μ,γ+μ

p (B)⊕
⊕

ρ∈Q
A,γ

Eρ)θ,q

↪→ Hs+θμ−ε,γ+θμ−2ε
p (B)⊕

⊕
σ∈QA,ν

Eσ,(3.14)

where ν = γ + (θ − 1)μ− ε.
By standard properties of interpolation spaces and according to (3.9), the oper-

ator

ω(x)

( ∏
ρ∈Q

A,γ

(
x∂x + ρ

)mρ+1
)

(3.15)

maps the left hand side of (3.14) to

(Hs−η,γ
p (B),Hs+μ−η,γ+μ

p (B))θ,q ↪→ Hs+θμ−η−δ,γ+θμ−δ
p (B),

for any δ > 0 and certain η ∈ N. Therefore, by the construction of (3.15), for the
last sum in (3.14) we deduce that σ ∈ Q

A,γ
. �

Remark 3.4. Theorem 3.3 still holds if we replace Hs+μ,γ+μ
p (B) with D(Amin).

Assume that A has x-independent coefficients and let A be the closed extension
(3.10). Take k ∈ N, k ≥ 1, and consider the integer powers Ak of A defined as usual
by

D(Ak) =
{
u ∈ D(Ak−1) |Au ∈ D(Ak−1)

}
.

Since Ak is also B-elliptic, by regarding Ak as a closed extension of Ak in Hs,γ
p (B)

we have that

D(Ak) = D(Ak
min)⊕

⊕
ρ∈Q

Ak,γ

Fρ,(3.16)

where Q
Ak,γ

⊆ QAk,γ and Fρ ⊆ Fρ denotes the usual asymptotics space corre-

sponding to the pole ρ. Recall that for the minimal domain in general we have
that

Hs+kμ,γ+kμ
p (B) ↪→ D(Ak

min) ↪→ Hs+kμ,γ+kμ−ε
p (B)

for all ε > 0. Then, [2, (I.2.5.2)], [2, (I.2.9.6)], and Remark 3.4 imply the following.

Corollary 3.5 (Complex powers). Let s, γ ∈ R, p ∈ (1,∞), c ≥ 0, k ∈ N, k ≥ 1,
and z ∈ C with 0 < Re(z) < k. Assume that A is B-elliptic with x-independent
coefficients and that for the closed extension A given by (3.10), A+ c is sectorial;



COMPLEX POWERS FOR CONE DIFFERENTIAL OPERATORS 3003

i.e., it belongs to the class P(0). Then, according to (3.16), for all ε > 0 we have
that

Hs+μRe(z)+ε,γ+μRe(z)+ε
p (B) +

⊕
ρ∈Q

Ak,γ

Fρ

↪→ D((A+ c)z) ↪→ Hs+μRe(z)−ε,γ+μRe(z)−ε
p (B) +

⊕
ρ∈Q

Ak,γ

Fρ.

As examples of sectorial closed extensions of B-elliptic cone differential operators
we refer to [8, Proposition 1] and [19, Theorem 4.3]. A typical one is obtained by the
Laplacian Δ on B induced by the metric g. This operator in the collar neighborhood
(0, 1)× ∂B near the boundary is of the form

Δ =
1

x2

(
(x∂x)

2 + (n− 1 +
x∂x(det[h(x)])

2 det[h(x)]
)(x∂x) + Δh(x)

)
,(3.17)

where Δh(x) is the Laplacian on the cross section ∂B induced by the metric h(x).
The conormal symbol of Δ is given by

σM (Δ)(λ) = λ2 − (n− 1)λ+Δh(0).

Clearly, (σM (Δ)(λ))−1 is defined as a meromorphic in λ ∈ C family of pseu-
dodifferential operators with values in L(Hs

p(∂B), H
s+2
p (∂B)), s ∈ R, p ∈ (1,∞).

More precisely, if σ(Δh(0)) = {λi}i∈N is the spectrum of Δh(0), then the poles of

(σM (Δ)(·))−1 coincide with the set

{
n− 1

2
±

√(
n− 1

2

)2

− λi

}
i∈N

.

Therefore, the pole zero of (σM (Δ)(·))−1 is always contained in the strip (3.7)
provided that γ ∈ (n−3

2 , n+1
2 ). In this case, denote again by C the subspace of EΔ,γ

in (3.6) under the choice ρ = m = 0 and c|∂Bi
= ci, ci ∈ C, i ∈ {1, ..., kB}; i.e., C

consists of smooth functions that are locally constant close to the boundary. Such
a realization can satisfy the property of maximal Lq-regularity, as we can see from
the following result.

Theorem 3.6. Let s ≥ 0, p ∈ (1,∞), and the weight γ be chosen as

n− 3

2
< γ < min

{
− 1 +

√(
n− 1

2

)2

− λ1,
n+ 1

2

}
,(3.18)

where λ1 is the greatest non-zero eigenvalue of the boundary Laplacian Δh(0). Con-
sider the closed extension Δ of Δ in Hs,γ

p (B) with domain

D(Δ) = Hs+2,γ+2
p (B)⊕ C.(3.19)

Then, for any θ ∈ [0, π) there exists some c > 0 such that c −Δ is R-sectorial of
angle θ.

Proof. This is [15, Theorem 4.1] or [16, Theorem 5.6]. �
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4. The heat equation on manifolds with conical singularities

We consider the well-known linear parabolic equation

u′(t)−Δu(t) = f(t), t > 0,(4.20)

u(0) = u0,(4.21)

for appropriate functions f and u0, which describes the heat distribution in a given
domain. The above problem, called the heat equation, was treated in [8], [17], and
[19] on manifolds with straight conical tips, and existence, uniqueness, and maximal
Lq-regularity of the solution on Mellin-Sobolev spaces were shown. More precisely,
in [8, Theorem 6] maximal Lq-regularity for (4.20)-(4.21) was shown by employing
the minimal extension of the Laplacian on a weighted Lp-space. Then, this result is
extended to dilation invariant extensions of the Laplacian in [19, Theorem 5.8]. In
[17] a non-linear generalization, called the porous medium equation, is considered,
and maximal Lq-regularity on arbitrary order Mellin-Sobolev spaces [17, Theorem
4.2] is shown, as well as on spaces with asymptotics in the sense of the domain of
bi-Laplacian [17, Proposition 7.5]. The same problem is treated in [12] on surfaces
with straight conical tips by using the Friedrichs extension of the Laplacian. Finally,
we also refer to [5] for an alternative approach to the problem with similar results,
as well as to [21] for the properties of the bi-harmonic heat kernel on such spaces.

In order to study the evolution on asymptotics spaces, we consider here the same
problem with the difference that the Laplacian is chosen on the power scale defined
by the realization (3.19).

Theorem 4.1. Let s ≥ 0, k ∈ N, k ≥ 1, p, q ∈ (1,∞), γ be chosen as in (3.18),

f ∈ Lq(0,∞;D(Δk−1)) and u0 ∈ (D(Δk),D(Δk−1)) 1
q ,q

,

where Δ is the realization (3.19). Then, for each T > 0 there exists a unique

u ∈ W 1,q(0, T ;D(Δk−1)) ∩ Lq(0, T ;D(Δk))

solving the problem (4.20)-(4.21) on [0, T )× B. Moreover, u depends continuously
on f and u0.

Proof. Let θ ∈ (π2 , π) and c > 0 such that c − Δ is R-sectorial of angle θ due to
Theorem 3.6. Consider the following linear degenerate parabolic problem:

v′(t) + (c−Δ)v(t) = e−ctf(t), t ∈ (0, T ),

v(0) = u0.

We regard Δ as an operator from D(Δk) to D(Δk−1). Then, the result follows
by applying Theorem 2.3 and Lemma 2.4 to the above problem and then setting
v = e−ctu. �

The maximal Lq-regularity of the solution obtained in the above theorem to-
gether with the interpolation results of the previous section can show that the
asymptotics space decomposition of the initial data u0 in (4.21) can be preserved
under the evolution induced by (4.20). More precisely, by the embedding (2.3), the
reiteration result [9, Corollary 7.3], [17, Lemma 5.2], Remark 3.4, and Theorem 4.1
we obtain the following.
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Corollary 4.2. Assume that the metric h in (3.4) is independent of x. Let s ≥ 0,
k ∈ N, k ≥ 1, p, q ∈ (1,∞), γ be chosen as in (3.18), ε > 0,

f ∈ Lq(0,∞;Hs+2(k−1),γ+2(k−1)
p (B)),

and

u0 ∈ Hs+2k− 2
q+ε,γ+2k− 2

q+ε
p (B) +

⊕
ρ∈Q

Δk,γ

Fρ,

where the asymptotics spaces involving the initial data determine the domain of the
kth power Δk of the realization (3.19); i.e., we have that

D(Δk) = D(Δk
min)⊕

⊕
ρ∈Q

Δk,γ

Fρ

with

Hs+2k,γ+2k
p (B) ↪→ D(Δk

min) ↪→ Hs+2k,γ+2k−δ
p (B)

for all δ > 0, Q
Δk,γ

⊆ QΔk,γ , and Fρ ⊆ Fρ according to (3.10). Then, for each

T > 0, for the unique solution of the problem (4.20)-(4.21) on [0, T ) × B obtained
by Theorem 4.1 we have that

u ∈ C([0, T ];Hs+2k− 2
q−ε,γ+2k− 2

q−ε
p (B) +

⊕
ρ∈Q

Δk,γ

Fρ).

From the above result we deduce that the more regularity we have for f and u0

the better information we obtain concerning the asymptotic behavior of the solution
u of (4.20) close to {0} × ∂B. In the case of the homogeneous heat equation, i.e.,
when f = 0, we can recover the complete asymptotic expansion of the solution
in terms of the local geometry around the singularities, as we can see from the
following result.

Theorem 4.3. Let s ≥ 0, p, q ∈ (1,∞), γ be chosen as in (3.18), f = 0, and
u0 ∈ Hs,γ

p (B). Then, there exists a unique

u ∈ C∞((0,∞);Hs,γ
p (B)) ∩ C([0,∞);Hs,γ

p (B)) ∩ C((0,∞);D(Δ))

solving the problem (4.20)-(4.21) on B, where Δ denotes the realization (3.19).
Furthermore, for any k ∈ N we have that

u ∈ C∞((0,∞);D(Δk)).

Proof. Take θ ∈ (π2 , π) and c > 0 such that c − Δ ∈ P(θ) due to Theorem 3.6.
Consider the following linear degenerate parabolic problem:

v′(t) + (c−Δ)v(t) = 0, t > 0,(4.22)

v(0) = u0.(4.23)

From [3, Corollary 3.3.11], [3, Theorem 3.7.11], and [3, Corollary 3.7.21] the above
problem admits a unique solution

v ∈ C∞((0,∞);Hs,γ
p (B)) ∩ C([0,∞);Hs,γ

p (B)) ∩ C((0,∞);D(Δ)).

Take any τ > 0 and consider the problem

w′(t) + (c−Δ)w(t) = 0, t > 0,(4.24)

w(0) = v(τ ).(4.25)
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By noting that v(τ ) ∈ D(Δ), we consider c −Δ in (4.24)-(4.25) as an operator in
D(Δ) with domain D(Δ2), which due to [2, Lemma V.1.2.3] belongs again to P(θ).
Therefore, from [3, Corollary 3.7.21] there exists a unique

w ∈ C∞((0,∞);D(Δ)) ∩ C([0,∞);D(Δ)) ∩ C((0,∞);D(Δ2))

solving (4.24)-(4.25). By uniqueness, we have that w(t) = v(t + τ ) when t ≥ 0.
The result now follows by successively applying the above argument and by setting
v = e−ctu to (4.22)-(4.23). �

Remark 4.4. The porous medium equation on manifolds with straight conical tips
was studied in [17]. In [17, Section 7] the equation was considered in sums of
higher order Mellin-Sobolev spaces and asymptotics spaces, and existence, unique-
ness, and maximal Lq-regularity of the solution were shown (see [17, Theorem 7.8]).
Furthermore, the Cahn-Hilliard equation on manifolds with possibly warped con-
ical tips was considered in [16], and similar results were shown in terms of higher
order Mellin-Sobolev spaces (see [16, Theorem 4.6] and [16, Theorem 5.9]). By the
embedding (2.3), Remark 3.4, and [9, Corollary 7.3] combined with [17, Theorem
7.8] and [16, Theorem 4.6] we can obtain in each case more precise information
concerning the asymptotic behavior of the solutions close to the singularities in
terms of the description of the domain of the bi-Laplacian.
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