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THE LINEAR REQUEST PROBLEM

BENOÎT R. KLOECKNER

(Communicated by Nimish Shah)

Abstract. We propose a simple approach to a problem introduced by Gala-
tolo and Pollicott, which can be called a linear request problem; in its general
formulation, it consists of finding a first-order perturbation of a dynamical
system such that its physical measure changes in a prescribed direction. Our
method needs the physical measure to be absolutely continuous with smooth
positive density: instead of using transfer operators, we use the well-known
fact that a change in the density of a smooth measure can be reproduced by
pushing forward along a well-chosen vector field. This implies that restricting
to perturbations by infinitesimal conjugacy already yields a solution to the
linear request problem, allowing us to work in any dimension and to dispense
from additional dynamical hypotheses. In particular, we don’t need to assume
hyperbolicity to obtain a solution, but if the map is Anosov, we obtain the
existence of an infinite-dimensional space of solutions.

Let M be a compact n-manifold and let T : M → M be a smooth map, seen
as a discrete-time dynamical system (by “smooth” we shall always mean C∞, but
see Remark 6). The study of invariant measures of T , and most particularly of any
“best” invariant measure, is a research area with a long and rich history. Often,
one considers “best” the physical invariant measures, i.e., those whose basin of at-
traction (points for which the average along the orbit of any continuous function
converges to the integral of the function) has positive volume. Physical measures
can take quite general forms, but in this work we will mainly consider the partic-
ular case of absolutely continuous invariant measures (acim) with smooth positive
density (identified with volume forms).

The linear response theory (see e.g. [Rue09,BS12]) is typically concerned with
the following question: assuming uniqueness of the physical measure, how does
it change (to first order) when the map T is perturbed? In the particular case
of a smooth acim, the question becomes: if (Tt)t∈(−ε,ε) is a family of maps with
T0 = T , differentiable at t = 0, such that each Tt preserves a smooth measure ωt,
can we differentiate ωt with respect to t and express

.
ω0 := d

dt

∣∣
t=0

ωt in terms of
.
T0 := d

dt

∣∣
t=0

Tt?

A recent article by Galatolo and Pollicott [GP17] proposes to study the opposite
direction, which we propose to call the linear request problem:
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Question 1 (Linear request problem in the smooth setting). Given a smooth
function ρ : M → R of vanishing integral,1 can we find a perturbation (Tt)t∈(−ε,ε)

of T , differentiable at t = 0 and preserving a family of smooth measure (ωt)t∈(−ε,ε)

such that
.
ω0 = ρω? Can we then express the possible values of

.
T0 in terms of ρ?

The possible values of
.
T0 will be called solutions of the linear request problem

(with parameter ρ).

Question 2. When the previous question has a positive answer, can we find an
“optimal” solution?

In [GP17] some answers to these questions are provided for expanding maps of the
circle. The main goal of this note is to observe that Question 1 has a positive answer
in a very general setting, without dynamical hypothesis and in every dimension.

Theorem 3. Let T : M → M be a smooth map acting on a compact smooth
Riemannian manifold, preserving a smooth volume form ω. Let ρ : M → R be a
smooth function such that

∫
M

ρω = 0.
There exists a deformation (Tt)(−ε,ε) of T that is differentiable at t = 0 and

preserves smooth volume forms ωt, such that
.
ω0 = ρω. Moreover one can ask all

Tt to be smoothly conjugate to T .

This follows from well-known facts in differential geometry, and the only faint
bit of novelty is in the observation that one can restrict to conjugate deformations,
of the form Tt = ϕt ◦ T ◦ ϕ−t where (ϕt)t∈(−ε,ε) is the flow of a vector field.

In Section 1 we give the (very short) proof of Theorem 3 and discuss the meaning
of differentiability for families of maps (Section 1.1) and for families of measures
(Section 1.3). Then in Section 2 we discuss uniqueness of the infinitesimal conjugacy
used to prove Theorem 3 and prove in particular that for Anosov maps the method
of Theorem 3 provides an infinite-dimensional set of solutions to the linear request
problem. In Section 3 we discuss an optimality question, which leads us to consider
a simple and classical PDE. In Section 4 we treat a simple example and compare
to [GP17].

1. Solving the linear request problem by infinitesimal conjugacy

1.1. Differentiating families of maps. Let us first define properly what it means
for a family (Tt)t∈(−ε,ε) to be differentiable at t = 0. Galatolo and Pollicott work
on the circle and implicitly use its parallelism (all tangent spaces can be identified),
which is not possible on a general manifold. Pointwise, we want to ask that for
each x ∈ M , the curve (Tt(x))t∈(−ε,ε) is differentiable at t = 0; moreover we
want the derivative of this curve to depend smoothly on x. Let us stress that.
T0(x) :=

d
dt

∣∣
t=0

Tt(x) is an element of TT (x)M , not of TxM , and
.
T0 is thus not a

vector field.2 We will thus consider the set

ΓT (M) =
{
Z : M → TM smooth

∣∣Zx ∈ TT (x)M ∀x ∈ M
}

and say that a family (Tt)t∈(−ε,ε) of smooth maps M → M is differentiable at t = 0

if
.
T0(x) is defined for all x and

.
T0 ∈ ΓT (M).

1The condition
∫
M ρω = 0 is needed whenever invariant measures are normalized to have fixed

total mass.
2Beware not to confuse the letter ‘T’ in the tangent space TM with the map T .
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Remark 4. Sometimes one considers perturbations of the form
.
T0(x) = XT (x) for

some vector field X. This is equivalent to considering
.
T0 ∈ ΓT (M) if T is invertible,

but is less general otherwise as the images of any x, y ∈ M such that T (x) = T (y)
would be asked to be perturbed identically.

We will be concerned with perturbations by “infinitesimal conjugacy”. If X
is a smooth vector field on M , we can consider its flow (ϕt)t∈R and the family
Tt := ϕt ◦ T ◦ ϕ−t. Then a direct computation shows that (Tt)t∈R is differentiable
at 0:

ϕt ◦ T ◦ ϕ−t(x) = ϕt ◦ T
(
x− tXx + o(t)

)
= ϕt

(
T (x)− tDxT (Xx) + o(t)

)

= T (x)− tDxT (Xx) + tXT (x) + o(t)

so that
.
T0(x) = −DxT (Xx)+XT (x), which we also write

.
T0 = −DT (X)+XT . This

is naturally an element of ΓT (M), as it should be. The element Z = −DT (X)+XT

of ΓT (M) is said to be the infinitesimal conjugacy induced by the vector field X.

1.2. Proof of Theorem 3. Observe that since T preserves ω, Tt then preserves
ωt := ϕt

∗ω. But

(1)
d

dt

∣∣∣∣
t=0

ϕt
∗ω = −LXω,

where L denotes the Lie derivative. To prove Theorem 3, we thus only have to check
that for all ρ such that

∫
M

ρω = 0, there is a vector field X such that LXω = −ρω.
This is well-known (see e.g. the proof of Moser’s theorem in [KH95, Theorem 5.1.27,
page 195]), but let us recall the argument for the sake of completeness.

Since ω is an n-form, the Cartan formula reads LXω = d(iXω) where iXω is the
(n−1)-form ω(X; ·; · · · ; ·) obtained by contraction with X. Since M is compact, its
top-dimensional cohomology is 1-dimensional, generated by the class of ω (or any
volume form), and every n-form of vanishing total integral is exact. This means
that there exists an (n − 1)-form θ such that dθ = −ρω. Now, ω being a volume
form, it is non-degenerate, which means that any (n − 1)-form can be obtained
by contracting ω with a well-chosen vector field; in particular, there must exist a
vector field X such that iXω = θ. Putting all this together, we get the desired
conclusion:

.
ω0 = −LXω = − d(iXω) = − dθ = ρω.

Remark 5. Using Moser’s theorem [Mos65] instead of its first-order version, one
sees that for all volume forms ω′, there is a conjugate of T that preserves ω′.

Remark 6. It could be asked what happens in lower regularity, e.g. Ck or Ck,α.
We do not enter into these details, since the strategy would be the very same, only
keeping track of the available regularity for the various objects ω, θ, X, etc.

1.3. Differentiating families of measures. One could ask whether the same
kind of method could be used for more general physical measures. While we used
the smooth structure on the space of n-forms to define differentiability, when consid-
ering a family (μt)t∈(−ε,ε) of more general measures the meaning of differentiability
becomes central to the problem (be it linear request or linear response).
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In the linear response literature it is common to define differentiability by using
test functions as coordinates: one fixes a space X of functions M → R and says
that the family (μt)t∈(−ε,ε) is differentiable at t = 0 if t �→

∫
f dμt is differentiable

at t = 0 for all f ∈ X . The larger X is, the stronger the definition. In the case of
smooth measures, these definitions are satisfied when μt = ρtω with (ρt)t∈(−ε,ε) a
differentiable family of smooth functions, as soon as the regularity of test functions
is sufficient to use the dominated convergence theorem. One can call these notions
“vertical differentiability”: they record how the amount of mass near each point
changes.

Another notion, appearing notably in optimal transportation and which can be
called “horizontal differentiability”, calls differentiable a change of measure corre-
sponding to the mass near each point moving in a certain direction: one asks for μt

to be o(t)-close (in the so-called Wasserstein metric W2) to the push-forward of μ0

in the direction of some vector field X (which can be considered the derivative of
(μt)t∈(−ε,ε)). It is in effect possible to make sense out of this definition for general

probability measures, and the vector field X only needs to be L2 with respect to
μ0 (and can even be multivalued; actually, the vector field should in general be
replaced by a measure on the total space of the tangent bundle). While we will not
enter into much detail, we want to stress that the question of what one means by
a differentiable family of measures can have different answers.

The continuity equation generalizes equation (1) to horizontally differentiable
families of general probability measures: if X is the “derivative” of (μt)t∈(−ε,ε) for
all smooth test functions ϕ : M → R we have

d

dt

∣∣∣∣
t=0

∫
ϕ dμt =

∫
dϕ(X) dμ0.

It translates horizontal differentiability into vertical differentiability (for regular
enough test functions), which is thus in general weaker. What we did in the proof
of Theorem 3 was to take advantage of the regularity of the measure to translate
backwards, from vertical differentiability to horizontal differentiability.

This points to the fact that one should not expect the method of proof of The-
orem 3 to generalize to physical measures, at least not if the perturbation of the
measure is only asked to be vertically differentiable. Let us go further and provide
an example showing how a generalization of Theorem 3 can actually fail (of course,
Theorem 3 generalizes in a straightforward way if the perturbation of the measure
is by pushing it forward by a smooth vector field).

Example 7. Let T : [−1, 1] → [−1, 1] be a contraction, say T (x) = x/2. It has
a unique physical measure μ0 = δ0, whose basin of attraction is the whole phase
space. Consider the perturbation μt = (1−t)δ0+tδ1/2 (for t ∈ [0, 1)) of the physical
measure. For any bounded f : [−1, 1] → R, we have

d

dt

∣∣∣∣
t=0

∫
f dμt =

d

dt

∣∣∣∣
t=0

(
(1− t)f(0) + tf(1/2)

)
= f(1/2)− f(0).

Therefore, (μt)t∈[0,1) is differentiable against any space of test functions, however
irregular. But for t > 0, μt cannot be a physical measure for a perturbation of T ,
since such a perturbation sends 1/2 near 1/4. There is no solution to the linear
request problem in this case.
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While this example might be only half convincing (the perturbation cannot be
extended to t < 0), it points out the natural question to study linear response
for a stronger definition of differentiability for families of measure: a completely
satisfying theory should have both linear request and linear response use the same
notion of differentiability.

2. Non-uniqueness of solutions

We now turn back to the smooth acim case and consider the size of the set of
first-order perturbations

.
T0 that solve the linear request problem

.
ω0 = ρω. Our

main result in this section shows that there can be very many solutions that are
infinitesimal conjugacies. Our assumption relies on two notions: a vector field X is
said to be T -invariant if DxT (Xx) = XT (x) for all x ∈ M , and X is said to preserve
the volume form ω if LXω = 0 (i.e., the flow of X preserves ω).

Theorem 8. Assume that n > 1 and that the null vector field X = 0 is the only
T -invariant vector field which preserves ω.

Then for each smooth function ρ : M → R such that
∫
M

ρω = 0, there is an
infinite-dimensional affine space D ⊂ ΓT (M) such that for each Z ∈ D, there is
a differentiable family of maps (Tt)(−ε,ε) preserving smooth volume forms ωt such
that

T0 = T,
.
T0 = Z,

.
ω0 = ρω.

Moreover one can ask all Tt to be smoothly conjugate to T .

In the vocabulary of Section 1.1, the above Z are infinitesimal conjugacies that
solve the linear request problem. We will see that Theorem 8 applies in particular
to Anosov maps, and thus in particular to expanding maps.

Proof. First, we investigate the size of the set of vector fields X that can be used
in the proof of Theorem 3, i.e., such that LXω = −ρω.

This reduces to solving d(iXω) = −ρω in the variable X and is decomposed into
two steps: choose an (n − 1)-form θ such that dθ = −ρω, and then find X such
that iXω = θ. This second step leaves no room, since Z �→ iZω is an isomorphism
from the space of vector fields to the space of (n− 1)-forms.

On the contrary, θ is not unique: one can add to it any closed (n− 1)-form and
obtain a suitable (n− 1)-form, and two suitable choices differ by a closed (n− 1)-
form. In other words, the space of solutions to LXω = −ρω identifies (through the
choice of a specific θ) to the space Zn−1(M) of closed (n− 1) forms. Observe that
since n ≥ 2, Zn−1(M) is infinite-dimensional (it contains all exact forms dα where
α is an (n− 2)-form).

Then we have to determine to what extent different vector fields can lead to the
same solution Z for the value of

.
T0, using the formula

.
T0 = −DT (X) +XT .

Consider X and Y two smooth vector fields on M such that LXω = LY ω = −ρω
and −DT (X) + XT = −DT (Y ) + YT . The first condition implies that X − Y
preserves ω, while the second one rewrites as XT − YT = DT (X − Y ); i.e., X − Y
is T -invariant. By hypothesis then X = Y , and any two different elements of
Zn−1(M) must induce different solutions to the linear request problem. �

In the case of a general smooth map T , the above proof shows that the space
D ⊂ ΓT (M) of infinitesimal conjugacies that solve the linear request problem is
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determined by:

• Zn−1(M), whose size mostly depends on n: it is infinite-dimensional when
n ≥ 2, but when n = 1, i.e., M = S

1, there are no (n − 2)-forms, and
Zn−1(M) = Z0(S1) is the space of constant functions and is 1-dimensional;

• the space of volume-preserving, T -invariant vector fields (which strongly
depend on the map T ).

Let us now consider a few examples of maps.

Example 9. If T is the identity map, then all vectors are T -invariant and any two

X, Y such that LXω = LY ω = −ρω will yield the same derivative
.
T0. But of course

this case is very degenerate, since for all X we have −DT (X)+XT = −X+X = 0,
which corresponds to ϕt ◦ T ◦ ϕ−t = ϕt ◦ ϕ−t = Id: the map is unchanged by
conjugacy and preserves all measures anyway.

Example 10. If T is an irrational rotation of the torus Rn/Zn, then ω must be the
Lebesgue measure (which is the only invariant measure), and the only T -invariant
vector fields are constant. As soon as n > 1 the linear request problem thus has
an infinite-dimensional space of solutions. If n = 1, writing X = v ∂/∂x where v is
a function and x the standard coordinate on the circle, the equation LXω = −ρω
translates into v′ = −ρ, which has solutions since

∫
ρ(x) dx = 0. Any two solutions

differ by a constant, which is T -invariant, and thus define the same first-order

perturbation
.
T0. In this case, there is a unique infinitesimal conjugacy solving the

linear request problem.

Example 11. Assume now that n > 1 and T is Anosov; i.e., the tangent bundle
of M admits an invariant decomposition TM = Es ⊕ Eu and DT is uniformly
exponentially expanding on Eu and uniformly exponentially contracting on Es.
Then there is no non-zero invariant vector field. Indeed, let X be a T -invariant
vector field. Since M is compact, there is a point x at which the Eu-component
of X has maximal norm, but invariance of X implies that this component blows
up exponentially along the orbit of x. Thus the maximum is 0, and X ∈ Es. But
then the same argument, applied along any backward orbit, shows that the Es

component of X must also vanish, and X = 0.
Theorems 3 and 8 thus show that if T is an Anosov map admitting a smooth acim,

then for all ρ of vanishing integral the linear request problem admits an infinite-
dimensional space of solutions (which can moreover be chosen among infinitesimal
conjugacies).

3. Optimality

We now take a look at Question 2, finding an “optimal” solution to the linear
request problem. Assume that in addition to the usual data M,T, ω, ρ, a Riemann-
ian metric has been fixed on M , and let S be the set of solutions Z to the linear
request problem and let D be the subset of infinitesimal conjugacies (i.e., of the
form Z = −DT (X)+XT for some X). In [GP17] Galatolo and Pollicott propose to

find the solution Z =
.
T0 ∈ S that minimizes some norm, for example ‖Z‖L2(ω). It

would make little sense to minimize this over Z ∈ D: as we will see in an example,
the optimal solution over S need not be in D.

However, it makes sense to minimize ‖X‖L2(ω) over all X such that LXω =
−ρω, as it corresponds to the “shortest” vector field whose induced infinitesimal
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conjugacy solves the linear request problem. This is a classical and well-understood
problem, which we present briefly for the sake of self-completeness.

First, one translates the differential geometric notation into their Riemannian
version: denoting by η the density of ω with respect to ω0, we have

LXω = d(iX(ηω0)) = ∇ · (ηX)ω0,

where ∇· is the divergence operator (later, ∇u will denote the gradient of a function
u). The equation for the infinitesimal conjugacy thus becomes ∇·(ηX) = ηρ, where
the product ηρ is the density of the perturbation ρω with respect to ω0.

We then rely on the following classical result to find a solution of a particular
type: a gradient vector field.

Proposition 12. Let η, g be smooth functions on a compact Riemannian manifold.
If η is positive and

∫
gω0 = 0, then there exists a smooth solution, unique up to

constants, to the partial differential equation

(2) ∇ · (η∇u) = g.

While it is not as easy as expected to find a proof of this precise result, it can
be proved using the methods used for the “Poisson equation” Δu = g; see e.g.
[Aub98]. For the sake of completeness, we provide a classical proof at the end of
the section.

Taking g = −ηρ, we get a solution u to the above equation, and X := ∇u is
then a solution to LXω = −ρω. The first version of this note actually used this to
obtain Theorem 3, but not insisting on finding a gradient vector field can be done
even more easily, as above. I wish to thank Anatole Katok for interesting criticism
on that first version, pointing to the simplified proof of Theorem 3 above.

The gradient solution is optimal in the above sense, as shown by the following
(again well-known) lemma.

Lemma 13. Among all vector fields which are solutions of LXω = −ρω, the unique
one which is the gradient of a function minimizes ‖X‖L2(ω) (where the underlying
norm is induced by the given Riemannian metric).

Note that if one changes the Riemannian metric, then both the notion of gradient
and the functional being optimized change.

Proof. Let X0 = ∇u be the unique gradient solution provided by Proposition 12.
Then any other solution writes as X = X0+

1
ηF where F is a divergence-free vector

field, and

∫ ∥∥X0 +
1

η
F
∥∥2 ω =

∫
‖X0‖2 ω + 2

∫
(∇u) · F ω0 +

∫ ∥∥1
η
F
∥∥2 ω

=

∫
‖X0‖2 ω − 2

∫
u (∇ · F )ω0 +

∫ ∥∥1
η
F
∥∥2 ω

=

∫
‖X0‖2 ω +

∫ ∥∥1
η
F
∥∥2 ω

so that X0 is indeed uniquely minimizing among solutions. �
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Proof of Proposition 12. One first observes that by using test functions and
then integration by parts, (2) is equivalent to∫

ϕ∇ · (η∇u)ω0 = −
∫

ϕgω0 ∀ϕ ∈ C∞(M),

∫
∇ϕ · ∇u ηω0 =

∫
ϕgω0 ∀ϕ ∈ C∞(M),(3)

and we are thus asking for u solving

Q(u, ϕ) = L(ϕ) ∀ϕ ∈ C∞(M),

where Q and L are the bilinear form, respectively the linear form, defined by each
side of (3), on the domain H1(M) of Sobolev functions. Recall that H1(M) can be
defined as the set of L2(ω0) functions whose gradient in the distribution sense is
L2(ω0) or as the completion of C∞(M) with respect to the norm

‖ϕ‖H1
=

∫
ϕ2 ω0 +

∫
‖∇ϕ‖2 ω0,

where ‖·‖ is the norm in each tangent space induced by the Riemannian metric.
Then one invokes the Lax-Milgram theorem, which precisely gives us a weak

solution u ∈ H1 as soon as we prove that Q and L are continuous in the H1 norm
(which follows from the Cauchy-Schwarz inequality) and that Q is coercive (i.e., the
seminorm it induces on H1(M) is equivalent to the H1 norm). That last statement
does not hold as constants are in the kernel of Q; we thus decompose

H1(M) = H⊥
1

⊥⊕
{constants},

where H⊥
1 is the subspace of functions of vanishing ω0-average. Now, on a compact

manifold one has:

Proposition 14 (Poincaré inequality). There exist a constant C depending only
on M and its metric such that for all ϕ ∈ H1(M), denoting by ϕ̄ = 1

vol(M)

∫
ϕω0

the average of ϕ, it holds that∫
|ϕ− ϕ̄|2 ω0 ≤ C

∫
‖∇ϕ‖2 ω0.

This inequality is very classical and can for example be derived as follows. Look-
ing at the Rayleigh quotient, one sees it is equivalent to λ1(M) > 0, where λ1 is the
first eigenvalue of −Δ (in H⊥

1 ). This then follows from Cheeger’s bound λ1 ≥ h2
C/4,

where Cheeger’s constant hC(M) can be bounded below in terms of the diameter
of M and a (possibly negative) lower bound on its Ricci curvature; see for example
Chapter IV of [Bér86].

On H⊥
1 , the Poincaré inequality yields

Q(ϕ, ϕ) =

∫
‖∇ϕ‖2ηω0

≥ min(η)

∫
‖∇ϕ‖2 ω0

≥ min(η)
(1
2

∫
‖∇ϕ‖2 ω0 +

1

2C

∫
ϕ2 ω0

)

≥ C ′‖ϕ‖2H1
,
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which is precisely the coercivity of Q restricted to H⊥
1 . It follows from the Lax-

Milgram theorem that there is a u ∈ H⊥
1 such that

Q(u, ϕ) = L(ϕ) ∀ϕ ∈ H⊥
1 .

To get rid of the restriction that ϕ must have vanishing average, observe that given
ϕ ∈ H1(M), its centered version ϕ− ϕ̄ is in H⊥

1 . On the one hand, ∇ϕ = ∇(ϕ− ϕ̄)
so that Q(u, ϕ) = Q(u, ϕ− ϕ̄), and on the other hand,

L(ϕ− ϕ̄) =

∫
ϕgω0 − ϕ̄

∫
gω0 = L(ϕ)

since g has vanishing average. It follows that Q(u, ϕ) = L(ϕ) for all ϕ ∈ H1(M);
in particular for all smooth ϕ, u ∈ H1(M) is a weak solution of (2).

The last step we need is to improve this into a strong solution. This is well-
known but subtle and is purely local: the manifold case is handled just as in
the R

n case, using charts. We refer for example to [Aub98, Theorem 3.55, page
85] for a suitable statement, which itself refers to [LU68], where it is proved that
u ∈ Ck+2,α(M) whenever the coefficients of (2) are Ck,α. This happens as soon as
η ∈ Ck+1,α(M) and g ∈ Ck,α(M) (in particular, if η and g are smooth, so is u).

4. A model case

Let us now spell out what happens in the model case when M = R/Z and
T (x) = 2x (modulo 1, implicitly). The acim of T is then the Lebesgue measure,
which coincides with the Riemannian volume ω0, and we thus have η ≡ 1.

A smooth vector field can be written X = v ∂/∂x, where x is the standard
coordinate on R/Z and v is a smooth function. We will identify X with v, and
since the circle is naturally parallel we can also identify any element of ΓT (R/Z)
with a function whose value at a point x represents a vector at the point 2x. Under
this identification we have[

−DT (X) +XT

]
(x) = −2v(x) + v(2x),

−LXω(x) = −v′(x).

Let ρ be a smooth function with vanishing average, which will be identified with
its 1-periodic lift to R. The gradient solution to −LXω = ρω is given by

v0(x) = −
∫ x

0

ρ(t) dt+

∫ 1

0

∫ y

0

ρ(t) dt dy

(the only primitive of −ρ which has vanishing average).
To compare with [GP17], let us consider the case ρ(x) = sin(2πx). Then

v0(x) =
1

2π
cos(2πx),

and the corresponding perturbation of T is given by

w0(x) = − 1

π
cos(2πx) +

1

2π
cos(4πx).

Meanwhile, the L2-norm minimizing perturbation found in [GP17] is given by
w1(x) =

1
2π cos(4πx); note that this cannot be obtained from an infinitesimal con-

jugacy, as they all come from vector fields v = v0 + c where c is a constant (see
Section 2) and thus are of the form w(x) = −2v(x) + v(2x) = w0(x)− c.
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Parceval identity easily shows that in fact, not only does v0 minimize the L2

norm among solutions of LXω = −ρω, but w0 also minimizes the L2 norm among
solutions of the linear request problem that are infinitesimal conjugacies. This
means that the difference in the two optimization problems does not stem merely
from the difference in the functionals to be minimized but also from the restriction
to infinitesimal conjugacy. This restriction facilitates the answer to Question 1, but
is not appropriate for Question 2 as meant in [GP17].

As a last remark, let us observe that, using the particular form of T and Fourier
series, w1 can be written as the image −DT (X) +XT of some non-smooth vector
field X, given by

v1(x) =
∑
k≥1

−1

2k+1π
cos(2π · 2k · x),

and can thus be thought of as a non-smooth infinitesimal conjugacy. This is not
surprising: by structural stability, we know that any deformation of T must be
topologically conjugate to T . The equation −DT (X) + XT = Y in the unknown
X has been studied under the name “twisted cohomological equation”, and the
regularity of its solutions when T is an expanding circle map has for example been
finely analyzed by de Lima and Smania [dLS15].
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