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COMPLETENESS OF UNBOUNDED CONVERGENCES
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(Communicated by Thomas Schlumprecht)

Abstract. As a generalization of almost everywhere convergence to vector
lattices, unbounded order convergence has garnered much attention. The con-
cept of boundedly uo-complete Banach lattices was introduced by N. Gao and
F. Xanthos, and has been studied in recent papers by D. Leung, V. G. Troit-
sky, and the aforementioned authors. We will prove that a Banach lattice is
boundedly uo-complete iff it is monotonically complete. Afterwards, we study
completeness-type properties of minimal topologies; minimal topologies are
exactly the Hausdorff locally solid topologies in which uo-convergence implies
topological convergence.

1. Introduction

In the first half of the paper, we study when norm bounded uo-Cauchy nets
in a Banach lattice are uo-convergent. The section starts with a counterexample
to a question posed in [LC18], and culminates in a proof that a Banach lattice is
(sequentially) boundedly uo-complete iff it is (sequentially) monotonically complete.
This gives the final solution to a problem that has been investigated in [Gao14],
[GX14], [GTX17], and [GLX].

The latter half of this paper focuses on the “extremal” topologies of a vector
lattice X. For motivation, recall that corresponding to a dual pair 〈E,E∗〉 is a
family of topologies on E “compatible” with duality. The two most important
elements of this family are the weak and Mackey topologies, which are defined by
their extremal nature. Analogously, given a vector lattice X, it is often possible
to equip X with many topologies compatible (in the sense of being locally solid
and Hausdorff) with the lattice structure. It is easy to see that whenever X admits
some Hausdorff locally solid topology, the collection of all Riesz pseudo-norms on X
generates a finest Hausdorff locally solid topology on X. This “greatest” topology
appears in many applications. Indeed, analogous to the theory of compatible locally
convex topologies on a Banach space - where the norm topology is the Mackey
topology - the norm topology on a Banach lattice X is the finest topology on X
compatible with the lattice structure. This is [AB03, Theorem 5.20].

On the opposite end of the spectrum, a Hausdorff locally solid topology on a
vector lattice X is said to be minimal if there is no coarser Hausdorff locally solid
topology on X; it is least if it is coarser than every Hausdorff locally solid topology
on X. Least topologies were introduced in [AB80] and studied in [AB03]; minimal
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topologies were studied in [Lab87], [Con05], [Tay], and [KT]. An important exam-
ple of a least topology is the unbounded norm topology on an order continuous
Banach lattice. The unbounded absolute weak∗-topology on L∞[0, 1] is a notewor-
thy example of a minimal topology that is not least. In the next subsection, we
briefly recall some facts about minimal and unbounded topologies; for a detailed
exposition the reader is referred to [Tay] and [KT].

1.1. Notation. Throughout this paper, all vector lattices are assumed to be Archi-

medean. For a net (xα) in a vector lattice X, we write xα
o−→ x if (xα) converges

to x in order ; that is, there is a net (yβ), possibly over a different index set, such
that yβ ↓ 0 and for every β there exists α0 such that |xα−x| ≤ yβ whenever α ≥ α0.

We write xα
uo−→ x and say that (xα) uo-converges to x ∈ X if |xα−x|∧u

o−→ 0 for
every u ∈ X+. For facts on uo-convergence, the reader is referred to [GTX17]. In
particular, [GTX17, Theorem 3.2] will be used freely. Recall that a Banach lattice
X is (sequentially) boundedly uo-complete if norm bounded uo-Cauchy nets
(respectively, sequences) in X are uo-convergent in X.

Given a locally solid topology τ on a vector lattice X, one can associate a topol-
ogy, uτ , in the following way. If {Ui}i∈I is a base at zero for τ consisting of solid
sets, for each i ∈ I and u ∈ X+ define

Ui,u := {x ∈ X : |x| ∧ u ∈ Ui}.
As was proven in [Tay, Theorem 2.3], the collection N0 = {Ui,u : i ∈ I, u ∈ X+}
is a base of neighbourhoods at zero for a new locally solid topology, denoted by
uτ , and referred to as the unbounded τ-topology . Noting that the map τ 
→
uτ from the set of locally solid topologies on X to itself is idempotent, a locally
solid topology τ is called unbounded if there is a locally solid topology σ with
τ = uσ or, equivalently, if τ = uτ. The following connection between minimal
topologies, unbounded topologies, and uo-convergence was proven in [Tay, Theorem
6.4]. Recall that a locally solid topology τ is Lebesgue if order null nets are τ -null.

Theorem 1.1. Let τ be a Hausdorff locally solid topology on a vector lattice X.
TFAE:

(i) uo-null nets are τ -null;
(ii) τ is Lebesgue and unbounded;
(iii) τ is minimal.

In particular, a vector lattice can admit at most one minimal topology.

Interestingly, the process of unbounding a topology can convert the greatest
topology into the least topology; this happens with the norm topology on an order
continuous Banach lattice.

Recall that a vector lattice X is universally complete if it is order complete
and laterally complete; it is universally σ-complete if it is σ-order complete and
laterally σ-complete. By [AB03, Theorem 7.21], every vector lattice has a (unique
up to lattice isomorphism) universal completion, which we will denote by Xu. By
[GTX17, Theorem 3.2] and order density of X in Xu, uo-convergence passes freely
between X and its universal completion. As in [AB03, Theorem 7.37], we say that
a non-empty subset A of X+ is dominable if it is order bounded when viewed as
a subset of Xu.

All other undefined terminology is consistent with [AB03]. In particular, we say
that a locally solid topology τ on a vector lattice X is Levi if τ -bounded increasing
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nets in X+ have supremum. Levi and monotonically complete are synonymous;
the latter terminology is that of [MN91], and is used in [GLX].

2. Boundedly uo-complete Banach lattices

Results equating the class of boundedly uo-complete Banach lattices to the class
of monotonically complete Banach lattices have been acquired, under technical as-
sumptions, by N. Gao, D. Leung, V. G. Troitsky, and F. Xanthos. The sharpest
result is [GLX, Proposition 3.1]; it states that a Banach lattice whose order continu-
ous dual separates points is boundedly uo-complete iff it is monotonically complete.
In this section, we remove the restriction on the order continuous dual.

The following question was posed as Problem 2.4 in [LC18]:

Question 2.1. Let (xα) be a norm bounded positive increasing net in a Banach
lattice X. Is (xα) uo-Cauchy in X?

If Question 2.1 is true, it is easily deduced that a Banach lattice is boundedly
uo-complete iff it is monotonically complete. However, the next example answers
this question in the negative, even for sequences.

Example 2.2. Let S be the set of all non-empty finite sequences of natural num-
bers. For s ∈ S define λ(s) = length(s). If s, t ∈ S, define s ≤ t if λ(s) ≤ λ(t)
and s(i) = t(i) for i = 1, . . . , λ(s). For s ∈ S with λ(s) = n and i ∈ N, define
s ∗ i = (s(1), . . . , s(n), i). Put

(2.1) X = {x ∈ �∞(S) : lim
i→∞

x(s ∗ i) = 1

2
x(s) for all s ∈ S}.

It can be verified that X is a closed sublattice of (�∞(S), ‖ · ‖∞) and for t ∈ S the
element et : S → R defined by

et(s) =

{
( 12 )

λ(s)−λ(t) if t ≤ s,

0 otherwise,

is an element of X with norm 1. Define f1 = e(1), f2 = e(1) ∨ e(2) ∨ e(1,1) ∨ e(1,2) ∨
e(2,1) ∨ e(2,2), and, generally,

fn = sup{et : λ(t) ≤ n and t(k) ≤ n ∀k ≤ λ(t)}.
The sequence (fn) is increasing and norm bounded by 1; it was shown in [BL88,
Example 1.8] that (fn) is not order bounded in Xu. Therefore, (fn) cannot be
uo-Cauchy in X for if it were, then it would be uo-Cauchy in Xu and hence order
convergent in Xu by [GTX17, Theorem 3.10]. Since it is increasing, it would have
supremum in Xu; this is a contradiction as (fn) is not order bounded in Xu.

Under some mild assumptions, however, Question 2.1 has a positive solution.
Recall that a Banach lattice is weakly Fatou if there exists K ≥ 1 such that
whenever 0 ≤ xα ↑ x, we have ‖x‖ ≤ K sup ‖xα‖.

Proposition 2.3. Let X be a weakly Fatou Banach lattice. Then every positive
increasing norm bounded net in X is uo-Cauchy.

Proof. Let K be such that 0 ≤ xα ↑ x implies ‖x‖ ≤ K sup ‖xα‖. Now assume
that 0 ≤ uα ↑ and ‖uα‖ ≤ 1. Let u > 0 and pick n such that ‖u‖ > K

n . If

0 ≤ ( 1nuα) ∧ u ↑α u, then ‖u‖ ≤ K
n . Therefore, there exists 0 < w ∈ X such that

( 1nuα)∧u ≤ u−w for all α. But then (nu−uα)
+ = n

[
u− ( 1nuα) ∧ u

]
≥ nw > 0 for



3416 M. A. TAYLOR

all α, so that (uα) is dominable. By [AB03, Theorem 7.37], (uα) is order bounded
in Xu, and hence uα ↑ û for some û ∈ Xu. This proves that (uα) is uo-Cauchy in
Xu, hence in X. �

Proposition 2.4. Let X be a weakly σ-Fatou Banach lattice. Then every positive
increasing norm bounded sequence in X is uo-Cauchy.

Proof. The proof is similar and, therefore, omitted. �

Even though Question 2.1 is false, the equivalence between boundedly uo-com-
plete and Levi still stands. We will show that now. First, recall that a positive
sequence (xn) in a vector lattice is said to be laterally increasing if it is increasing
and (xm − xn) ∧ xn = 0 for all m ≥ n.

Theorem 2.5. Let X be a Banach lattice. TFAE:

(i) X is σ-Levi;
(ii) X is sequentially boundedly uo-complete;
(iii) every increasing norm bounded uo-Cauchy sequence in X+ has a supre-

mum.

Proof. (i)⇒(ii): Let (xn) be a norm bounded uo-Cauchy sequence in X. WLOG,
(xn) is positive; otherwise consider positive and negative parts. Define

e =
∞∑
n=1

1

2n
xn

1 + ‖xn‖

and consider Be, the band generated by e. Then (xn) is still norm bounded and
uo-Cauchy in Be. Also, Be has the σ-Levi property for if 0 ≤ yn ↑ is a norm
bounded sequence in Be, then yn ↑ y for some y ∈ X as X is σ-Levi. Since Be is a
band, y ∈ Be and yn ↑ y in Be. We next show that there exists u ∈ Be such that

xn
uo−→ u in Be, and hence in X.
For each m,n, n′ ∈ N, since |xn∧me−xn′ ∧me| ≤ |xn−xn′ | ∧me, the sequence

(xn∧me)n is order Cauchy, hence order converges to some um in Be since the σ-Levi
property implies σ-order completeness. The sequence (um) is increasing and

‖um‖ ≤ K sup
n

‖xn ∧me‖ ≤ K sup
n

‖xn‖ < ∞,

where we use that σ-Levi implies weakly σ-Fatou. This can be proved by following
the arguments in [MN91, Proposition 2.4.19]. Since Be is σ-Levi, (um) increases to
an element u ∈ Be. Fixm. For anyN,N ′ define xN,N ′ = supn≥N,n′≥N ′ |xn−xn′ |∧e.
Since (xn) is uo-Cauchy, xN,N ′ ↓ 0. Now, for each m,

|xn ∧me− xn′ ∧me| ∧ e ≤ |xn − xn′ | ∧ e ≤ xN,N ′ ∀n ≥ N,n′ ≥ N ′.

Taking order limit in n′ yields:

|xn ∧me− um| ∧ e ≤ xN,N ′ .

Since e is a weak unit in Be, taking order limit in m now yields:

|xn − u| ∧ e ≤ xN,N ′ ∀n ≥ N,

from which it follows that |xn − u| ∧ e
o−→ 0 in Be. This yields xn

uo−→ u in Be by
[GTX17, Corollary 3.5].

The implication (ii)⇒(iii) is clear. For the last implication it suffices, by [AW97,
Theorem 2.4], to verify that every norm bounded laterally increasing sequence in
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X+ has a supremum. Let (xn) be a norm bounded laterally increasing sequence in
X+. By [AW97, Proposition 2.2], (xn) has supremum in Xu, hence is uo-Cauchy
in Xu. It follows that (xn) is uo-Cauchy in X and, therefore, by assumption,
uo-converges to some x ∈ X. It is then clear that xn ↑ x in X. �

Theorem 2.6. Let X be a Banach lattice. TFAE:

(i) X is Levi;
(ii) X is boundedly uo-complete;
(iii) every increasing norm bounded uo-Cauchy net in X+ has a supremum.

Proof. If X is Levi, then X is boundedly uo-complete by [GLX, Proposition 3.1]. It
is clear that (ii)⇒(iii) and the proof of (iii)⇒(i) is the same as in the last theorem
but with [AW97, Theorem 2.4] replaced with [AW97, Theorem 2.3]. �

3. Completeness of minimal topologies

Throughout this section, X is a vector lattice and τ denotes a locally solid topol-
ogy on X. We begin with a brief discussion on relations between minimal topologies
and the B-property. Corollary 3.3 will be of importance as many properties of lo-
cally solid topologies are stated in terms of positive increasing nets. For minimal
topologies, these properties permit a uniform and efficient treatment.

The B-property was introduced as property (B,iii) by W. A. J. Luxemburg and
A. C. Zaanen in [LZ64]. It is briefly studied in [AB03] and, in particular, it is shown
that the Lebesgue property does not imply the B-property. We prove, however, that
if τ is unbounded, then this implication does indeed hold true:

Definition 3.1. A locally solid vector lattice (X, τ ) satisfies the B-property if
it follows from 0 ≤ xn ↑ in X and (xn) τ -bounded that (xn) is τ -Cauchy. An
equivalent definition is obtained if sequences are replaced with nets.

Proposition 3.2. If X is a vector lattice admitting a minimal topology τ , then τ
satisfies the B-property.

Proof. Suppose τ is minimal and (xn) is a τ -bounded sequence satisfying 0 ≤ xn ↑.
By [AB03, Theorem 7.50], (xn) is dominable. By [AB03, Theorem 7.37], (xn) is

order bounded in Xu so that xn
uo−→ u for some u ∈ Xu. In particular, (xn) is

uo-Cauchy in Xu. It follows that (xn) is uo-Cauchy in X. Since τ is Lebesgue,
(xn) is uτ -Cauchy in X. Finally, since τ is unbounded, (xn) is τ -Cauchy in X. �

Corollary 3.3. Let X be a vector lattice admitting a minimal topology τ , and (xα)
an increasing net in X+. TFAE:

(i) (xα) is τ -bounded;
(ii) (xα) is τ -Cauchy.

Recall the following definition, taken from [AB03, Definition 2.43].

Definition 3.4. A locally solid vector lattice (X, τ ) is said to satisfy the mono-
tone completeness property (MCP) if every increasing τ -Cauchy net of X+

is τ -convergent in X. The σ-MCP is defined analogously with nets replaced with
sequences.

Remark 3.5. By Corollary 3.3, a minimal topology has MCP iff it is Levi.
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Proposition 3.6. Let τ be a Hausdorff locally solid topology on X. If uτ satisfies
MCP, then so does τ . If uτ satisfies σ-MCP, then so does τ .

Proof. Suppose 0 ≤ xα ↑ is a τ -Cauchy net. It is then uτ -Cauchy and hence uτ -

converges to some x ∈ X. Therefore, xα ↑ x and xα
τ−→ x. Replacing nets with

sequences yields the σ-analogue. �
Recall by [AB03, Theorem 2.46 and Exercise 2.11] that a Hausdorff locally

solid vector lattice (X, τ ) is (sequentially) complete iff order intervals are (sequen-
tially) complete and τ has (σ)-MCP. Therefore, since τ -convergence agrees with
uτ -convergence on order intervals, uτ being (sequentially) complete implies τ is
(sequentially) complete.

A locally solid topology τ on a vector latticeX is pre-Lebesgue if order bounded
disjoint sequences inX are τ -null. By [AB03, Theorem 3.23], the Lebesgue property
implies the pre-Lebesgue property.

Lemma 3.7. Let (X, τ ) be a Hausdorff locally solid vector lattice. If τ is un-
bounded, then TFAE:

(i) τ has MCP and is pre-Lebesgue;
(ii) τ is Lebesgue and Levi.

Proof. It is sufficient, by [DL98, Theorem 2.5], to prove that (X, τ ) contains no
lattice copy of c0. Suppose, towards contradiction, that X does contain a lattice
copy of c0, i.e., there is a homeomorphic Riesz isomorphism from c0 onto a sublattice
of X. This leads to a contradiction as the standard unit vector basis is not null in
c0, but the copy in X is by [Tay, Theorem 4.2]. �

Lemma 3.7 is another way to prove that a minimal topology has MCP iff it is
Levi. We next present the sequential analogue:

Lemma 3.8. Let (X, τ ) be a Hausdorff locally solid vector lattice. If τ is un-
bounded, then TFAE:

(i) τ has σ-MCP and is pre-Lebesgue;
(ii) τ is σ-Lebesgue and σ-Levi.

Proof. (i)⇒(ii) is similar to the last lemma; apply instead [DL98, Proposition 2.1
and Theorem 2.4].

(ii)⇒(i): It suffices to show that τ is pre-Lebesgue. For this, suppose that
0 ≤ xn ↑≤ u; we must show that (xn) is τ -Cauchy. Since τ is σ-Levi and order
bounded sets are τ -bounded, xn ↑ x for some x ∈ X. Since τ is σ-Lebesgue,

xn
τ−→ x. �
Putting pieces together from other papers, we next characterize sequential com-

pleteness of uo-convergence.

Theorem 3.9. Let X be a vector lattice. TFAE:

(i) X is sequentially uo-complete;
(ii) every positive increasing uo-Cauchy sequence in X uo-converges in X;
(iii) X is universally σ-complete.

In this case, uo-Cauchy sequences are order convergent.

Proof. (i)⇒(ii) is clear. (ii)⇒(iii) by careful inspection of [LC18, Proposition 2.8],
(iii)⇒(i) and the moreover clause follow from [GTX17, Theorem 3.10]. �
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Remark 3.10. Recall that by [AB03, Theorem 7.49], every locally solid topology on
a universally σ-complete vector lattice satisfies the pre-Lebesgue property. Using
uo-convergence, we give a quick proof of this. Suppose τ is a locally solid topology
on a universally σ-complete vector lattice X; we claim that uo-null sequences are
τ -null. This follows since τ is σ-Lebesgue and uo and o-convergence agree for
sequences by [GTX17, Theorem 3.9]. In particular, since disjoint sequences are
uo-null, disjoint sequences are τ -null.

We next give the topological analogue of Theorem 3.9:

Lemma 3.11. Let X be a vector lattice admitting a minimal topology τ . TFAE:

(i) τ is σ-Levi;
(ii) τ has σ-MCP;
(iii) X is universally σ-complete;
(iv) (X, τ ) is sequentially boundedly uo-complete in the sense that τ -bounded

uo-Cauchy sequences in X are uo-convergent in X.

Proof. (i)⇔(ii) follows from Lemma 3.8. We next deduce (iii). Since τ is σ-Levi, X
is σ-order complete; we prove X is laterally σ-complete. Let {an} be a countable
collection of mutually disjoint positive vectors in X, and define xn =

∑n
k=1 ak.

Then (xn) is a positive increasing sequence in X, and it is uo-Cauchy, as an ar-
gument similar to [LC18, Proposition 2.8] easily shows. By Theorem 1.1, (xn)

is τ -Cauchy, hence xn
τ−→ x for some x ∈ X since τ has σ-MCP. Since (xn) is

increasing and τ is Hausdorff, xn ↑ x. Clearly, x = sup{an}.
(iii)⇒(iv) follows from Theorem 3.9; (iv)⇒(i) follows immediately after noticing

that Proposition 2.3 is valid (similar proof) if “weakly Fatou Banach lattice” is
replaced by “Hausdorff Fatou topology”. �

The following question(s) remain open:

Question 3.12. Let X be a vector lattice admitting a minimal topology τ . Are
the following equivalent?

(i) (X, τ ) is sequentially complete;
(ii) X is universally σ-complete.

Question 3.13. Let (X, τ ) be Hausdorff and Lebesgue. Are the following equiva-
lent?

(i) Order intervals of X are sequentially τ -complete;
(ii) X is σ-order complete.

Remark 3.14. Question 3.12 and Question 3.13 are equivalent. Indeed, in both
cases it is known that (i)⇒(ii). If Question 3.13 is true, then Question 3.12 is true
since we have already established that minimal topologies have σ-MCP when X is
universally σ-complete. Suppose Question 3.12 is true. If X is σ-order complete,
then X is an ideal in its universal σ-completion, Xs. Indeed, it is easy to establish
that if Y is a σ-order complete vector lattice sitting as a super order dense sublattice
of a vector lattice Z, then Y is an ideal of Z; simply modify the arguments in
[AB03, Theorem 1.40]. By [AB03, Theorem 4.22] we may assume, WLOG, that τ
is minimal. τ then lifts to the universal completion and can be restricted to Xs.
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Question 3.13 is a special case of Aliprantis and Burkinshaw’s [AB78, Open
Problem 4.2], which we state as well:

Question 3.15. Suppose τ is a Hausdorff σ-Fatou topology on a σ-order complete
vector lattice X. Are the order intervals of X sequentially τ -complete?

The case of complete order intervals is much easier than the sequentially complete
case. The next result is undoubtedly known, but fits in nicely; we provide a simple
proof that utilizes minimal topologies.

Proposition 3.16. Suppose τ is a Hausdorff Lebesgue topology on X. Order in-
tervals of X are complete iff X is order complete.

Proof. If X is order complete, then order intervals are complete by [AB03, Theorem
4.28].

By [AB03, Theorem 4.22] we may assume, WLOG, that τ is minimal. If order

intervals are complete, then X is an ideal of X̂ = Xu by [AB03, Theorem 2.42] and
[Tay, Theorem 5.2]. Since Xu is order complete, so is X. �
Remark 3.17. If X is an order complete and laterally σ-complete vector lattice
admitting a minimal topology τ , then τ is sequentially complete. Although these
conditions are strong, they do not force X to be universally complete. This can
be seen by equipping the vector lattice of [AB03, Example 7.41] with the minimal
topology given by restriction of pointwise convergence from the universal comple-
tion.

The key step in the proof of Theorem 2.5 is [AW97, Theorem 2.4] which states
that a Banach lattice is σ-Levi if and only if it is laterally σ-Levi. We say that a
locally solid vector lattice (X, τ ) has the lateral σ-Levi property if sup xn exists
whenever (xn) is laterally increasing and τ -bounded. For minimal topologies, the
σ-Levi and lateral σ-Levi properties do not agree, as we now show:

Proposition 3.18. Let X be a vector lattice admitting a minimal topology τ .
TFAE:

(i) X is laterally σ-complete;
(ii) τ has the lateral σ-Levi property;
(iii) every disjoint positive sequence, for which the set of all possible finite sums

is τ -bounded, must have a supremum.

Proof. (i)⇒(iii) is clear, as is (ii)⇔(iii); we prove (ii)⇒(i). Assume (ii) and let
(xn) be a disjoint sequence in X+. Since (xn) is disjoint, (xn) has a supremum
in Xu. Define yn = x1 ∨ · · · ∨ xn. The sequence (yn) is laterally increasing and
order bounded in Xu. By [AB03, Theorem 7.37], (yn) forms a dominable set in
X+. By [Tay, Theorem 5.2(iv)], (yn) is τ -bounded, and hence has supremum in X
by assumption. This implies that (xn) has a supremum in X and, therefore, X is
laterally σ-complete. �

In [Lab84] and [Lab85], many completeness-type properties of locally solid topolo-
gies were introduced. For entirety, we classify the remaining properties, which he
refers to as “BOB” and “POB”.

Definition 3.19. A Hausdorff locally solid vector lattice (X, τ ) is said to be
boundedly order-bounded (BOB) if increasing τ -bounded nets in X+ are or-
der bounded in X. (X, τ ) satisfies the pseudo-order boundedness property
(POB) if increasing τ -Cauchy nets in X+ are order bounded in X.
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Remark 3.20. It is clear that a Hausdorff locally solid vector lattice is Levi iff it is
order complete and boundedly order bounded. It is also clear that BOB and POB
coincide for minimal topologies.

Proposition 3.21. Let X be a vector lattice admitting a minimal topology τ .
TFAE:

(i) (X, τ ) satisfies BOB;
(ii) X is majorizing in Xu.

Proof. (i)⇒(ii): Let 0 ≤ u ∈ Xu. Since X is order dense in Xu, there exists a
net (xα) in X such that 0 ≤ xα ↑ u. In particular, (xα) is order bounded in Xu,
hence dominable in X by [AB03, Theorem 7.37]. By [Tay, Theorem 5.2], (xα) is
τ -bounded. By assumption, (xα) is order bounded in X, hence, (xα) ⊆ [0, x] for
some x ∈ X+. It follows that u ≤ x, so that X majorizes Xu.

(ii)⇒(i): Suppose (xα) is an increasing τ -bounded net in X+. It follows from
[AB03, Theorem 7.50] that (xα) is dominable, hence order bounded in Xu. Since
X majorizes Xu, (xα) is order bounded in X. �

Remark 3.22. By [AB03, Theorem 7.15], laterally complete vector lattices majorize
their universal completions.

Remark 3.23. If τ is a Hausdorff Fatou topology on X, it is easy to see that (X, τ )
satisfies BOB iff every increasing τ -bounded net in X+ is order Cauchy in X.
Compare with Question 2.1.

We next state the σ-analogue of Proposition 3.21.

Proposition 3.24. Let X be an almost σ-order complete vector lattice admitting
a minimal topology τ . TFAE:

(i) (X, τ ) satisfies σ-BOB;
(ii) X is majorizing in the universal σ-completion Xs of X.

Proof. (i)⇒(ii) is similar to Proposition 3.21.
(ii)⇒(i): Suppose (xn) is an increasing τ -bounded sequence in X+. It is then

dominable inX, hence inXs by [AB03, Lemma 7.11]. It follows by [AB03, Theorem
7.38] that (xn) is order bounded in Xs. Since X is majorizing in Xs, (xn) is order
bounded in X. �

The next definition is standard in the theory of topological vector spaces:

Definition 3.25. Let (E, σ) be a Hausdorff topological vector space. E is quasi-
complete if every σ-bounded σ-Cauchy net is σ-convergent.

Remark 3.26. Since Cauchy sequences are bounded, there is no sequential analogue
of quasi-completeness.

We finish with the full characterization of completeness of minimal topologies:

Theorem 3.27. Let X be a vector lattice admitting a minimal topology τ . TFAE:

(i) X is universally complete;
(ii) τ is complete;
(iii) τ satisfies MCP;
(iv) τ is Levi;
(v) τ is quasi-complete;
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(vi) (X, τ ) is boundedly uo-complete in the sense that τ -bounded uo-Cauchy
nets in X are uo-convergent in X.

Proof. (i)⇔(ii) by [Tay, Corollary 5.3] combined with [Tay, Theorem 6.4]. Clearly,
(ii)⇒(iii)⇔(iv). (iii)⇒(ii) since if τ satisfies MCP, then τ is topologically complete
by [AB03, Corollary 4.39]. We have thus established that (i)⇔(ii)⇔(iii)⇔(iv). It
is clear that (ii)⇒(v), and (v)⇒(iii) by Corollary 3.3.

(ii)⇒(vi): Let (xα) be a uo-Cauchy net in X; (xα) is then τ -Cauchy and hence
τ -convergent. The claim then follows from [Tay, Remark 2.26].

(vi)⇒(iv): Suppose 0 ≤ xα ↑ is τ -bounded. (xα) is then uo-Cauchy, hence
uo-convergent to some x ∈ X. Clearly, x = sup xα. �

Remark 3.28. This is in good agreement with Proposition 3.6. If the minimal
topology satisfies MCP, then Proposition 3.6 states that every Hausdorff Lebesgue
topology satisfies MCP. Universally complete spaces, however, admit at most one
Hausdorff Lebesgue topology by [AB03, Theorem 7.53].
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