NEUMANN ISOPERIMETRIC CONSTANT ESTIMATE FOR CONVEX DOMAINS

XIANZHE DAI, GUOFANG WEI, AND ZHENLEI ZHANG
(Communicated by Lei Ni)

Abstract

We present a geometric and elementary proof of the local Neumann isoperimetric inequality on convex domains of a Riemannian manifold with Ricci curvature bounded below.

1. Introduction

Isoperimetric and Sobolev inequalities are equivalent inequalities (see e.g. Theorem 1.3 below) which play an important role in geometric analysis on manifolds. Indeed, doing analysis on manifolds usually depends on the estimate of the Sobolev constant which could then be obtained via the isoperimetric constant. There is extensive work on isoperimetric constant estimates. An important method pioneered by Gromov relies on the geometric measure theory and its regularity theory, which works for closed manifolds or convex domains with smooth boundary; see e.g. the survey article [10] and the recent paper [15]. One may also obtain an estimate through the Li-Yau gradient estimate for the heat kernel [13] and the equivalence of heat kernel bounds, Sobolev inequality, isoperimetric inequality; see [18, page 448], which again requires smooth and convex boundary. Another method using needle decomposition from convex geometry has also been very successful and, very recently, has been combined with optimal transport and extended to the non-smooth case; see 4 and the references therein. For star-shaped domains in a manifold with Ricci curvature bounded from below, Buser 3] gave an elementary proof for a Neumann isoperimetric constant (the Cheeger constant) estimate using comparison geometry, but the estimate depends on the in and out radius of the domain, which does not give a uniform estimate for convex domain as the in-radius might be small. In the presence of positive Ricci lower bound, see [2, 16, 17; in particular [16] also treats the non-smooth boundary in that setting. For general convex domains with non-smooth boundaries, the estimate for the isoperimetric constant is only obtained in the very recent paper [4] mentioned above. In this short note we give a very geometric and elementary proof of a Neumann isoperimetric inequality, albeit with non-optimal constant, for convex domains whose boundaries need not be smooth.

First we recall some definitions.

[^0]Definition 1.1. When M is compact (with or without boundary), the Neumann α-isoperimetric constant of M is defined by

$$
\mathrm{IN}_{\alpha}(M)=\sup _{H} \frac{\min \left\{\operatorname{vol}\left(M_{1}\right), \operatorname{vol}\left(M_{2}\right)\right\}^{1-\frac{1}{\alpha}}}{\operatorname{vol}(H)}
$$

where H varies over the compact ($n-1$)-dim submanifold of M which divides M into two disjoint open submanifolds M_{1}, M_{2} (with or without boundary).

Definition 1.2. The Neumann α-Sobolev constant of M is defined by

$$
\mathrm{SN}_{\alpha}(M)=\sup _{f \in C^{\infty}(M)} \frac{\inf _{a \in \mathbb{R}}\|f-a\|_{\frac{\alpha}{\alpha-1}}}{\|\nabla f\|_{1}} .
$$

The isoperimetric constant and Sobolev constant are equivalent.
Theorem 1.3 (5]; see also [12]). For all $n \leq \alpha \leq \infty$,

$$
\mathrm{IN}_{\alpha}(M) \geq \mathrm{SN}_{\alpha}(M) \geq \frac{1}{2} \mathrm{IN}_{\alpha}(M)
$$

For convenience we consider the normalized Neumann α-isoperimetric and α Sobolev constant:

$$
\operatorname{IN}_{\alpha}^{*}(M)=\operatorname{IN}_{\alpha}(M) \operatorname{vol}(M)^{1 / \alpha}, \quad \mathrm{SN}_{\alpha}^{*}(M)=\mathrm{SN}_{\alpha}(M) \operatorname{vol}(M)^{1 / \alpha}
$$

Using comparison geometry and Vitali covering we give an estimate on the normalized Neumann isoperimetric constant for convex domain in terms of the Ricci curvature lower bound and the diameter of the domain.

Theorem 1.4. Let (M, g) be a complete Riemannian manifold of dimension n, with Ric $\geq-(n-1) K$ for some $K \geq 0$. Let Ω be a bounded convex domain. Then

$$
\begin{equation*}
\operatorname{IN}_{n}^{*}(\Omega) \leq 40^{n} e^{11(n-1) \sqrt{K} d} \cdot d, \tag{1.1}
\end{equation*}
$$

where d is the diameter of the domain Ω. In particular, if M is closed with diameter d, then

$$
\begin{equation*}
\mathrm{IN}_{n}^{*}(M) \leq 40^{n} e^{11(n-1) \sqrt{K} d} \cdot d \tag{1.2}
\end{equation*}
$$

Corollary 1.5. Let (M, g) be a complete Riemannian manifold of dimension n, with non-negative Ricci curvature. Let Ω be a bounded convex domain. Then

$$
\begin{equation*}
\operatorname{IN}_{n}^{*}(\Omega) \leq 40^{n} \cdot d \tag{1.3}
\end{equation*}
$$

where d is the diameter of the domain Ω. In particular, if M is closed with diameter d, then

$$
\begin{equation*}
\operatorname{IN}_{n}^{*}(M) \leq 40^{n} \cdot d \tag{1.4}
\end{equation*}
$$

Remark 1.6. The case when Ω equals the whole manifold is well-known. The reference we mentioned earlier for convex domain in the literature deals with domains with (smooth) convex boundary which is a stronger condition.

Remark 1.7. For balls we can obtain both Dirichlet and Neumann isoperimetric constant estimates even under the much weaker integral Ricci lower bound assumption [8,21. On the other hand it is not clear if that will remain true for convex domains.

Remark 1.8. Using the mean curvature estimate from [19] one gets a similar estimate when the Bakry-Emery Ricci curvature is bounded from below and oscillation of the potential function is bounded.

2. Proof of Theorem 1.4

The proof goes by a covering argument of Anderson [1], combined with an observation of Gromov [11]. See [1] or [8 for a similar argument of estimating the local Dirichlet isoperimetric constant. First of all we recall a lemma whose proof is a slight modification of Gromov's observation [11, 5.(C)].

Lemma 2.1. Let M^{n} be a complete Riemannian manifold. Let Ω be a convex domain of M and let H be any hypersurface dividing Ω into two parts Ω_{1}, Ω_{2}. For any Borel subsets $W_{i} \subset \Omega_{i}$, there exists x_{1} in one of W_{i}, say W_{1}, and a subset W in another one, W_{2}, such that

$$
\begin{equation*}
\operatorname{vol}(W) \geq \frac{1}{2} \operatorname{vol}\left(W_{2}\right) \tag{2.1}
\end{equation*}
$$

and any $x_{2} \in W$ has a unique minimal geodesic connecting to x_{1} which intersects H at some z such that

$$
\begin{equation*}
\operatorname{dist}\left(x_{1}, z\right) \geq \operatorname{dist}\left(x_{2}, z\right) \tag{2.2}
\end{equation*}
$$

The convexity assumption of Ω is essential. It implies that any minimal geodesic with endpoints in different parts must intersect H. The Bishop-Gromov relative volume comparison theorem gives the following:

Lemma 2.2. Let H, W, and x_{1} be as in the lemma above. Then

$$
\begin{equation*}
\operatorname{vol}(W) \leq 2^{n-1} D e^{(n-1) \sqrt{K} D} \operatorname{vol}\left(H^{\prime}\right), \tag{2.3}
\end{equation*}
$$

where $D=\sup _{x \in W} \operatorname{dist}\left(x_{1}, x\right)$ and H^{\prime} is the set of intersection points with H of geodesics $\gamma_{x_{1}, x}$ for all $x \in W$.
Proof. Let $\Gamma \subset S_{x_{1}}$ be the set of unit vectors such that $\gamma_{v}=\gamma_{x_{1}, x_{2}}$ for some $x_{2} \in W$. We compute the volume in the polar coordinate at x_{1}. Write $d v=\mathcal{A}(\theta, t) d \theta \wedge d t$ in the polar coordinate $(\theta, t) \in S_{x_{1}} \times \mathbb{R}^{+}$. For any $\theta \in \Gamma$, let $r(\theta)$ be the radius such that $\exp _{x_{1}}(r \theta) \in H$. Then $W \subset\left\{\exp _{x_{1}}(r \theta) \mid \theta \in \Gamma, r(\theta) \leq r \leq 2 r(\theta)\right\}$. So, by relative volume comparison,

$$
\begin{aligned}
\operatorname{vol}(W) & \leq \int_{\Gamma} \int_{r(\theta)}^{2 r(\theta)} \mathcal{A}(\theta, t) d t d \theta \\
& \leq \frac{\sinh ^{n-1}(2 \sqrt{K} D)}{\sinh ^{n-1}(\sqrt{K} D)} \int_{\Gamma} r(\theta) \mathcal{A}(\theta, r(\theta)) d \theta \\
& \leq D \frac{\sinh ^{n-1}(2 \sqrt{K} D)}{\sinh ^{n-1}(\sqrt{K} D)} \operatorname{vol}\left(H^{\prime}\right)
\end{aligned}
$$

The required estimate follows from $\frac{\sinh (2 t)}{\sinh t}=2 \cosh t \leq 2 e^{t}$ whenever $t \geq 0$.
Corollary 2.3. Let H be any hypersurface dividing a convex domain Ω into two parts Ω_{1}, Ω_{2}. For any ball $B=B_{r}(x)$ we have
(2.4) $\min \left(\operatorname{vol}\left(B \cap \Omega_{1}\right), \operatorname{vol}\left(B \cap \Omega_{2}\right)\right) \leq 2^{n+1} r e^{(n-1) \sqrt{K} d} \operatorname{vol}\left(H \cap B_{2 r}(x)\right)$
where $d=\operatorname{diam}(\Omega)$. In particular, if $B \cap \Omega$ is divided equally by H, we have

$$
\begin{equation*}
\operatorname{vol}\left(B_{r}(x) \cap \Omega\right) \leq 2^{n+2} r e^{(n-1) \sqrt{K} d} \operatorname{vol}\left(H \cap B_{2 r}(x)\right) . \tag{2.5}
\end{equation*}
$$

Proof. Put $W_{i}=B \cap \Omega_{i}$ in the above lemma and notice that $D \leq 2 r$ and $H^{\prime} \subset$ $H \cap B_{2 r}(x)$.

Now we are ready to prove our main theorem.
Proof of Theorem 1.4. We may assume that $\operatorname{vol}\left(\Omega_{1}\right) \leq \operatorname{vol}\left(\Omega_{2}\right)$. For any $x \in \Omega_{1}$, let r_{x} be the smallest radius such that

$$
\operatorname{vol}\left(B_{r_{x}}(x) \cap \Omega_{1}\right)=\operatorname{vol}\left(B_{r_{x}}(x) \cap \Omega_{2}\right)=\frac{1}{2} \operatorname{vol}\left(B_{r_{x}}(x) \cap \Omega\right) .
$$

Let $d=\operatorname{diam}(\Omega)$. By the above corollary,

$$
\begin{equation*}
\operatorname{vol}\left(B_{r_{x}}(x) \cap \Omega\right) \leq 2^{n+2} r_{x} e^{(n-1) \sqrt{K} d} \operatorname{vol}\left(H \cap B_{2 r}(x)\right) \tag{2.6}
\end{equation*}
$$

The domain Ω_{1} has a covering

$$
\Omega_{1} \subset \bigcup_{x \in \Omega_{1}} B_{2 r_{x}}(x)
$$

By the Vitali Covering Lemma (cf. [14, Section 1.3]), we can choose a countable family of disjoint balls $B_{i}=B_{2 r_{x_{i}}}\left(x_{i}\right)$ such that $\bigcup_{i} B_{10 r_{x_{i}}}\left(x_{i}\right) \supset \Omega_{1}$. Applying the relative volume comparison theorem and the convexity of Ω we have

$$
\begin{aligned}
\operatorname{vol}\left(\Omega_{1}\right) & \leq \sum_{i} \frac{\int_{0}^{10 r_{x_{i}}} \sinh ^{n-1}(\sqrt{K} t) d t}{\int_{0}^{r_{x_{i}}} \sinh ^{n-1}(\sqrt{K} t) d t} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega_{1}\right) \\
& \leq 10 \sum_{i} \frac{\sinh ^{n-1}\left(10 \sqrt{K} r_{x_{i}}\right)}{\sinh ^{n-1}\left(\sqrt{K} r_{x_{i}}\right)} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega_{1}\right) \\
& \leq 10 \frac{\sinh ^{n-1}(10 \sqrt{K} d)}{\sinh ^{n-1}(\sqrt{K} d)} \sum_{i} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega_{1}\right) \\
& \leq 10^{n} e^{9(n-1) \sqrt{K} d} \sum_{i} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega_{1}\right) \\
& =2^{-1} \cdot 10^{n} \cdot e^{9(n-1) \sqrt{K} d} \sum_{i} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right) .
\end{aligned}
$$

Moreover, since the balls B_{i} are disjoint, (2.6) gives

$$
\operatorname{vol}(H) \geq \sum_{i} \operatorname{vol}\left(B_{i} \cap H\right) \geq 2^{-n-2} e^{-(n-1) \sqrt{K} d} \sum_{i} r_{x_{i}}^{-1} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right)
$$

These two estimates lead to

$$
\begin{aligned}
\frac{\operatorname{vol}\left(\Omega_{1}\right)^{\frac{n-1}{n}}}{\operatorname{vol}(H)} & \leq 2 \cdot 20^{n} e^{10(n-1) \sqrt{K} d} \frac{\left(\sum_{i} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right)\right)^{\frac{n-1}{n}}}{\sum_{i} r_{x_{i}}^{-1} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right)} \\
& \leq 40^{n} e^{10(n-1) \sqrt{K} d} \frac{\sum_{i} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right)^{\frac{n-1}{n}}}{\sum_{i} r_{x_{i}}^{-1} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right)} \\
& \leq 40^{n} e^{10(n-1) \sqrt{K} d} \sup _{i} \frac{\operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right)^{\frac{n-1}{n}}}{r_{x_{i}}^{-1} \operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right)} \\
& =40^{n} e^{10(n-1) \sqrt{K} d} \sup _{i}\left(\frac{r_{x_{i}}^{n}}{\operatorname{vol}\left(B_{r_{x_{i}}}\left(x_{i}\right) \cap \Omega\right)}\right)^{\frac{1}{n}}
\end{aligned}
$$

On the other hand, since $\operatorname{vol}\left(\Omega_{1}\right) \leq \operatorname{vol}\left(\Omega_{2}\right)$, we have $r_{x} \leq d$ for any $x \in \Omega_{1}$. Thus, by the relative volume comparison and convexity of Ω again, we have

$$
\operatorname{vol}(\Omega) \leq \frac{\int_{0}^{d} \sinh ^{n-1}(\sqrt{K} t) d t}{\int_{0}^{r_{x}} \sinh ^{n-1}(\sqrt{K} t) d t} \operatorname{vol}\left(B_{r_{x}}(x) \cap \Omega\right)
$$

Therefore,

$$
\operatorname{vol}(\Omega)^{\frac{1}{n}} \cdot \frac{\operatorname{vol}\left(\Omega_{1}\right)^{\frac{n-1}{n}}}{\operatorname{vol}(H)} \leq 40^{n} e^{10(n-1) \sqrt{K} d} \sup _{0<r \leq d}\left(\frac{r^{n} \int_{0}^{d} \sinh ^{n-1}(\sqrt{K} t) d t}{\int_{0}^{r} \sinh ^{n-1}(\sqrt{K} t) d t}\right)^{\frac{1}{n}} .
$$

The last term on the right hand side has the estimate

$$
\begin{aligned}
\frac{r^{n} \int_{0}^{d} \sinh ^{n-1}(\sqrt{K} t) d t}{\int_{0}^{r} \sinh ^{n-1}(\sqrt{K} t) d t} & \leq r^{n} \cdot \frac{d}{r} \cdot \frac{\sinh ^{n-1}(\sqrt{K} d)}{\sinh ^{n-1}(\sqrt{K} r)} \leq d^{n} \cdot \frac{\sinh ^{n-1}(\sqrt{K} d)}{(\sqrt{K} d)^{n-1}} \\
& \leq d^{n} e^{(n-1) \sqrt{K} d}
\end{aligned}
$$

The required normalized Neumann isoperimetric constant estimate now follows.

References

[1] M. T. Anderson, The L^{2} structure of moduli spaces of Einstein metrics on 4-manifolds, Geom. Funct. Anal. 2 (1992), no. 1, 29-89. MR 1143663
[2] Vincent Bayle and César Rosales, Some isoperimetric comparison theorems for convex bodies in Riemannian manifolds, Indiana Univ. Math. J. 54 (2005), no. 5, 1371-1394. MR2177105
[3] Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213-230. MR683635
[4] Fabio Cavalletti and Andrea Mondino, Sharp and rigid isoperimetric inequalities in metricmeasure spaces with lower Ricci curvature bounds, Invent. Math. 208 (2017), no. 3, 803-849. MR 3648975
[5] Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press, Princeton, N. J., 1970, pp. 195-199. MR 0402831
[6] Jeff Cheeger and Shing Tung Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), no. 4, 465-480. MR 615626
[7] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354. MR0385749
[8] Xianzhe Dai, Guofang Wei, and Zhenlei Zhang, Local Sobolev constant estimate for integral Ricci curvature bounds, Adv. Math. 325 (2018), 1-33. MR3742584
[9] Sylvestre Gallot, Isoperimetric inequalities based on integral norms of Ricci curvature, Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987), Astérisque 157-158 (1988), 191-216. MR976219
[10] Sylvestre Gallot, Inégalités isopérimétriques et analytiques sur les variétés riemanniennes (French, with English summary, On the geometry of differentiable manifolds (Rome, 1986)), Astérisque 163-164 (1988), 5-6, 31-91, 281 (1989). MR999971
[11] M. Gromov, Paul Levy's isoperimetric inequality, Publications IHES, 1980.
[12] Peter Li, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge University Press, Cambridge, 2012. MR 2962229
[13] Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. MR834612
[14] Fanghua Lin and Xiaoping Yang, Geometric measure theory-an introduction, Advanced Mathematics (Beijing/Boston), vol. 1, Science Press Beijing, Beijing; International Press, Boston, MA, 2002. MR 2030862
[15] Emanuel Milman, Sharp isoperimetric inequalities and model spaces for the curvature-dimension-diameter condition, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 5, 1041-1078. MR3346688
[16] Frank Morgan, The Levy-Gromov isoperimetric inequality in convex manifolds with boundary, J. Geom. Anal. 18 (2008), no. 4, 1053-1057. MR2438911
[17] Lei Ni and Kui Wang, Isoperimetric comparisons via viscosity, J. Geom. Anal. 26 (2016), no. 4, 2831-2841. MR3544942
[18] Laurent Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), no. 2, 417-450. MR 1180389
[19] Guofang Wei and Will Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405. MR 2577473
[20] Deane Yang, Convergence of Riemannian manifolds with integral bounds on curvature. I, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 1, 77-105. MR. 1152614
[21] Z. Zhang, Notes on the isoperimetric constant estimate, (2016), preprint.
Department of Mathematics, East China Normal University, Shanghai, 200062 People's Republic of China - and - University of California Santa Barbara, Santa Barbara, California 93106

Email address: dai@math.ucsb.edu
Department of Mathematics, University of California Santa Barbara, Santa Barbara, California 93106

Email address: wei@math.ucsb.edu
Department of Mathematics, Capital Normal University, Beijing, 10048 People's Republic of China

Email address: zhleigo@aliyun.com

[^0]: Received by the editors July 18, 2017.
 2010 Mathematics Subject Classification. Primary 53C20.
 Key words and phrases. Ricci curvature, isoperimetric constant.
 The first author was partially supported by the Simons Foundation, NSF, and NSFC.
 The second author was partially supported by the Simons Foundation and NSF DMS 1506393.
 The third author was partially supported by CNSF11371256.

