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ABSTRACT. We prove that the mixed g-Gaussian algebra I'q (Hp) associated
to a real Hilbert space Hg and a real symmetric matrix Q = (g;;) with
sup|gi;| < 1, is a factor as soon as dim Hg > 2. We also discuss the fac-
toriality of g-deformed Araki-Woods algebras, in particular showing that the
g-deformed Araki-Woods algebra I'q(Hg, Uz) given by a real Hilbert space Hg
and a strongly continuous group Uy is a factor when dim Hy > 2 and U; admits
an invariant eigenvector.

1. INTRODUCTION

This paper studies the factoriality of some ¢-deformed von Neumann algebras.
In the early 1990s, motivated by mathematical physics, Bozejko and Speicher intro-
duced the von Neumann algebra I';(Hg) generated by ¢-Gaussian variables [BS91].
Since then, the von Neumann algebra I';(Hg) has been widely studied, and also its
several generalizations have been introduced and fruitfully investigated. In partic-
ular, there are two interesting types of ¢g-deformed algebras which generalize that
of Bozejko and Speicher: the first one is the mixed g-Gaussian algebra introduced
in [BS94], and the second one is the family of g-deformed Araki-Woods algebras
constructed in [Hia03].

The question of factoriality of these g-deformed Neumann algebras remained a
well-known problem in the field for many years. In 2005, Ricard [Ric05] proved that
the von Neumann algebra I'y(Hg) is a factor as soon as dim Hg > 2, which solved
the problem for I';(Hg) in full generality (for earlier partial results see also ISni04],
[Kx606], [BKSI97]). However, the analogous problem for mixed ¢-Gaussian algebras
and ¢-deformed Araki-Woods algebras has remained open. Among the known re-
sults, the factoriality of mixed ¢-Gaussian algebras was proved by Krélak [Kré00]
when the underlying Hilbert space is infinite-dimensional, and very recently by
Nelson and Zeng [NZ16] when the size of the deformation parameters is sufficiently
small; similarly, the factoriality of g-deformed Araki-Woods algebras was only es-
tablished by Hiai in [Hia03] when the ‘almost periodic part’ (see Section 4 for an
explanation of this term) of the underlying Hilbert space is infinite-dimensional,
and by Nelson in [Nell5] when ¢ is small.

In this note we solve the problem of factoriality for mixed ¢-Gaussian algebras
in full generality, following the ideas of [Ric05]. Our methods apply also to the
g-deformed Araki-Woods algebras, and we show that the ¢g-deformed Araki-Woods
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algebra I'y(Hg, Uy) is a factor as soon as dim Hgr > 2 and the semigroup U; admits
an invariant eigenvector. We remark that after the completion of this work, we
learned that the last result mentioned above was also obtained independently by
Bikram and Mukherjee in [BM17], as a part of a detailed study of maximal abelian
subalgebras in g-deformed Araki-Woods algebras.

The scalar products below are always linear on the left. The plan of the paper
is as follows: in Section 2 we present a Hilbert space lemma providing estimates
for certain commutators to be used later, in Section 3 we establish the factoriality
of mixed g-Gaussian algebras in full generality, and in Section 4 we discuss sev-
eral results concerning factoriality in the context of ¢-Araki-Woods von Neumann
algebras.

2. A CONVERGENCE LEMMA FOR g-COMMUTATION RELATIONS

The following purely Hilbert-space-theoretic lemma will play a key role in our
discussions of factoriality in the following sections.

Lemma 1. Let (Hy)n>1 be a sequence of Hilbert spaces and write H = ®n21 H,.
Let r,s € N and let (a;)1<i<r, (bj)1<j<s be two families of operators on H which
send each H, into H, 1 or H,_1, such that there exists 0 < q < 1 with

||(al —b; al)

Assume that K,, C Hy, is a ﬁmte—dzmenswnal Hilbert subspace for each n > 1 such
that for K = @,, K, we have

a(K)CK, 1<i<r-—1, anda;|x=0.
Then for any bounded nets (£4), (Ne) C K such that n, — 0 weakly, we have
(a] -+ ar€a, by bsng) — 0.

n € N.

Proof. Put
T = (aib; — bjai)lm,, 1<i<rl<j<sn>L
Then for each i we may write

aiby -+ b€ — by -+ bya& = Zbl .. bj_lTi(jm(j,n))ij b, €€ Hy,

where m(j,n) is an integer greater than n — s. Iterating this formula we obtain
Qp - -arby -+ bsé

:bl...bsar...alg
+) (ar-aiby o batiog - a1€ = ap e aggby - —ar§)
i=1

=by - beay - aré

+ZGJT"'G’Z+1 Zbl T(m (1.4, n))b bs ai71"'a1§,

where £ € H,, and for each i,j,n the integer m/(i, j,n) is greater than n — s — r.
Now we consider two bounded nets (£,), (7o) C K such that n, — 0 weakly. Write

Na (n((ln))nZL 77(()7) e K,.
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We have

<a>1k t a:fa, by bsnoz> = <€a7ar weearby - bsna>a
and by the assumptions a, - - - @11, = 0, so together with the previous computations
for a, - --ayby - - - b€, we obtain

(2.1) (af -+ af€as by baa) = > (€a, Tunl),

n>1

where
Tn = Zar"'aiJrl Zbl bjflTZ(]m (i’j’n))bj"'bs A;—1+-Qq.
i=1 j=1

Recall that ||Tz(jk)|| < ¢* for all i, j, k by assumption. So for each o and n

1Tl < Clasr, s)g™ 7
where C(q,r, s) is a constant independent of n. Together with ([2.1]) we have
(2:2) (a3 aj€a, by -+ -baria)| < C(g,75) sup [&all Y g [0S
@ n>1

Since 1, — 0 weakly, we have for each N > 1,

N
> "0l =0
n=1
and on the other hand,
" N < sup Il g™ /(1 = g).
n>N "
Therefore by (22 we get
VN >1, limsup|{a}---a’€a,br-- bsna)| < C'(r,5,¢)q",

with a constant C’(r, s, q) independent of N, which means that
(ai - arlasbr - bsna) = 0,

as desired. O

3. FACTORIALITY OF MIXED ¢-GAUSSIAN ALGEBRAS

Let N e N let Q = (qij)gj:l be a symmetric matrix with ¢;; € (—1,1), and let
Hy be a finite-dimensional real Hilbert space with orthonormal basis eg,...,en.
We recall briefly the construction of mixed Gaussian algebras, as introduced in
[BS94]. Write H = Hg + iHp to be the complexification of Hg. Let Fo(H) be the
Fock space associated to the Yang-Baxter operator

TH@H—)H@H, 6i®6j'—>qij6j®€i

constructed in [BS94]. Denote by (-,-) the inner product on Fg(H) and let 2 be
the vacuum vector. Denote by ¢(-) = (-Q, Q) the vacuum state. The left creation
operators [; are defined by the formulas

li§=e®& €€ Fo(H),
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and their adjoints, the left annihilation operators, can be characterized by equalities

=0,
n
ey @ ®€,) =Y 6ijlij  Gijer€i @ D ej_, ®ej, ®+- Dej,.
k=1

Similarly, we have the right creation/annihilation operators
ri{=E®e;, §€F(H),
r’Q =0,
n
(e @ ©5,) =D i jijigs i @ Qe Dej,, @ e,
k=1
We consider the associated mixed g-Gaussian algebra I'g(Hg) generated by the
self-adjoint variables s; = [ +[;. Denote
q = max|g;;| < 1.

0]
By a word in Fo(H) we mean a vector in Fgo(H) of the form ¢; ® --- ® (, with
some n > 1 and (3,...,¢, € H. Krélak [Kr600] proved that any word & € Fo(H)
corresponds to a Wick product W(€) € T'q(Hg) with W(£)Q2 = €. Also, [BS94]

remarked that JT'g(Hg)J is the commutant of I'g (Hg), where J is the conjugation
operator given by

J(eil®...®ein):ei ®...®ei1_

We write ’
Wr(f) =JW(JE)J, €€ @nH®".
Then Wr(f) S FQ(H]R)/.

Lemma 2. For eachn € N andi,j =1,...,N the operators Ti(n) on H®" char-
acterized by the equalities

l;-kT'j — T'jl;-k = 51’]’ Dn :Z;(n)

n

satisfy the norm estimate HTZ-(")H <q".

Proof. The case of n = 0 is obvious and we take n > 1 in the following. Observe
that

lirj(ej, ®---®ej,) =1(ej, ® - Qej, ®ej)
n
= Z(siquijl i 1€, @€ ® Clry1 ®---Bej, B
k=1

+ 6ijGijy * Gign€j @ - @ ej,,

and
n
rili (e @ ®e,) = 0ijuliyy Giju 1€y @ D€y, Qe BB, D
k=1

Now take
T HE = B, e, @ @), Gijigy - Qg iy @ @ €,
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The eigenspace of Ti(") corresponding to 0;;¢;j, - - - gij, is spanned by the vectors
of the type Eg; ;.3 = {ejy ® - ®ejy t qijy - dij, = Gj; Qs }, Which are
orthogonal for distinct j = {j1,...,7n}. So

1T < max{a, - @i, 1< drs--edn <N} < "
and Ti(n) is the desired operator. O

Now the following main result is in reach. The idea is partially inspired by the
proof in [Ric05] in conjunction with Lemma [l

Theorem 3. For each 1 < i < n, the von Neumann subalgebra generated by s; is
mazimal abelian in T'g(Hg). In particular, Tg(Hg) is a factor if n > 2.

Proof. By [BKS97], we know that the spectral measure of s; is the g-semicircular
law with ¢ = ¢;;. Therefore the von Neumann algebra M generated by s; is diffuse
and abelian, and hence isomorphic to the von Neumann algebra L>°([0,1],dm)
where dm denotes the Lebesgue measure on [0,1]. As a result, we may find a
sequence of unitaries (uq)aeny € M which correspond to Rademacher functions via
this isomorphism. In particular, we have

Uo = ul, ud =1, u,Q — 0 weakly in Fg(H).
Now assume x € I'g(Hg) with zs; = s;x, and hence
zy=yxr, yE<M.

Let Fq(Ce;) C Fo(H) be the Fock space associated to e;. Observe that for any
vector £ € U,,en H®™ and all a > 1 we have
(3.1)

(€,2Q) = p(*W(€)) = p(z"ud W (E)) = p(uaz*uaW(£)) = (Wp()ual, zua).

We remark that if further £ is orthogonal to Fg(Ce;), then
(3.2) Vy € To(Hr), (Wr(§ua,yua2) — 0.

To see this, it suffices to consider the case yQ € H®" for an arbitrary n > 0
since it is easy to see that the functionals y*Q — (W,.(§)ua, yusf?) extend to
uniformly bounded functionals on Fo(H) thanks to the traciality of ¢ ([BS94}
Theorem 4.4]). Now by the Wick formula in [Kré00, Theorem 1], it is enough to
prove the convergence

(3.3) (riy - ra, vt ey L T uaf) = 0

*
Ts+1

Jt e 41 Jaq
for any fixed indices 41, ..., 4p, j1, ..., Jq With some i; # i. Denote
s' = min{k : iy #i}.
If s" > s, we have r} -1} uo{2 = 0 for all @ > 1 and the convergence (B.3) becomes

trivial. So we assume in the following s’ < s. Note that by definition
rily —liri =0, 1l =Ur; =0,
and by Lemma
Gy —ril)|menl < ¢" n>1
Also, observe that by the choice of s,
i Fomey =0, 75 (Fo(Rey)) C Fo(Re;), 1<k<s.
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So now applying Lemma [l to the families of operators r7 ,..., 7 and l;,,...,l;,
Z;HI, el l;-‘q, we obtain the convergence (B3). As a consequence, the convergence
[(B2) holds as well, which, together with (3.1]), yields that

(&, 2Q) =0.

This means that Q2 € Fp(Ce;) since £ is arbitrarily chosen in a dense subset of
Fo(Ce;)t. We can then deduce that z € M using the second quantization of the
projection P : Hr — Re; (see [LP99, Lemma 3.1]). Thus we have shown that the
von Neumann subalgebra M generated by s; is maximal abelian in I'q(Hg).

Also, if z € T'g(Hr) NTg(Hg)’, then the above argument shows that zQ €
N, Fo(Ce;), so zQ2 € CQ. Therefore I'g(Hg) is a factor. O

4. FACTORIALITY OF ¢-ARAKI-WOODS ALGEBRAS

Now we discuss the factoriality of ¢g-Araki-Woods algebras. We refer to [Hia03]
for the detailed description of the construction of these algebras and only sketch
the outline below. Following the notation of [Hia03|, given a real Hilbert space Hg
with a strongly continuous group U; of orthogonal transformations on Hg, we may
introduce a deformed inner product (-,-)y on H¢ := Hg + iHg. Denote by H the
completion of H¢ with respect to (-,-)y and denote by F,(H) the ¢-Fock space
associated to H. We define the left and right creation operators

(n=E@n, rEn=neE &cHmnecF(H),

and the left and right annihilation operators

() =187, () =r)", fe€H.

We denote by I'y(Hg,U;) (resp., C;(Hg,U;)) the von Neumann algebra (resp.,
C*-algebra) generated by {l(e) + I*(e) : e € Hgr} in B(F,(H)), to be called the
g-Araki-Woods von Neumann algebra. Properties of the vacuum state guarantee
the existence of the Wick product map W : T'((Hg, U;)Q? — T'j(Hg,Uy) such that
W (£)Q2 = £. On the other hand, denote

Hp={{€H: Ve Hg, (§n) €R}.

Then the von Neumann algebra I, . (Hg, U;) generated by {r(e) +7*(e) : e € Hg}
in B(F,(H)) is the commutant of I'y,(Hg, U;), and again there exists a right Wick
product W, : Ty . (Hg,U;)Q — Ty . (Hg, U;) such that W,.(£)Q = £. We denote by I
the standard complex conjugation on Hg +iHp, and by I,. the complex conjugation
on Hp +iHj. The following observations are well known and we state them here
for later use.

Lemma 4. (1) Suppose that eq,...,e, € Hc. Then we have the following Wick
formula:
(4.1)

W@ ®en) = > Uew) - Uea ) (Tejyy) - U (Lej, )g' ),

k=011,...,%k,Jk+15--2Jn

where I; = {i1, ... ik} and Iy = {jr+1,- .-, Jn} form a partition of the set {1,...,n}
and i(I1, I2) is the number of crossings. A similar formula holds for W, (e1®- - -®ey,)
as well.

(2) Let f € Hg, e € H}, +1Hg. If (e, f) = 0; then (I e, f) = 0.
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Proof. (1) See [BKS97,, Proposition 2.7], [Was17, Lemma 3.1].
(2) Write e = e1 + ey with e1,e2 € Hg. Since (e1, f) € R, (ea, f) € R, we see
that the identity (e, f) = 0 yields

(e1, f) = (e2, f) = 0.
Therefore
(Ie, fy = (e1 —iea, f) = 0.

According to Shlyakhtenko [Shl97], we have the decomposition
(HR7 Ut) = (KR7 Ut/) D (LRv Ut/l)7

where U] is almost periodic and U}’ is ergodic. Then Kg C Hp is the real closed
subspace spanned by eigenvectors of U; = A, Let K¢ = Kg + iKr be the com-
plexification and K be the completion of K¢ with respect to the deformed norm
as above, and similarly for L. Note that the orthogonal projection P : Hx — Kg
commutes with U;. So by the second quantization, I'y(Kr, U;|x) embeds as a von
Neumann subalgebra of I'y(Hg,U;). For an operator T we denote by Fu(T) its
second quantization.

The following observation shows that in looking at the center of the g-Araki-
Woods algebra it suffices to consider the ‘K-part’ of the algebra (we do not really
use this fact in what follows).

Lemma 5. (1) The semigroup F,(U;) admits no eigenvectors in Fo(K)*+ C F,(H);

(2) Assume x € T'y(Hg,Uy) NTy(Hgr,U)'. Then

Q€ Fe(K) and € Ty(Kr, Utlkyg)-
Proof. (1) Let (e;) be an orthonormal basis in Hg. Since F,(P) is the orthogonal
projection onto F,(K'), we have
Fa(P)(Fy(K)*H) =0.
Hence
Fy(K)* =span{e;, ® - ®e;, :n>131<m<mn,e;, €Lg}

Denote

K, =spaii{e;, @ --®e;, € Fo(K)*}=span{H,; @---®H,; ,H;=K or L,3H; = L}.

n?

Note that Uy is unitarily equivalent to a multiplier map on some L?(p). So by the
definition of K and L and the fact that at least one of H;, is equal to L, it is easy
to see that Fo(Up)|n,;, @--oH,, = Uiln, @ @U|n,, admits no eigenvectors. Since
each H;  is invariant under Uy, F,(U;) admits no eigenvectors in K, either. Then
the lemma follows immediately. Indeed, let

=) G eF(K), & ek,

be an eigenvector. Then we get

> (Uit = 260) =0

n

for some A and hence U;&, — A&, = 0 for all n, which yields a contradiction.
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(2) Assume z € I'((Hg, U;) NIy (Hr, U;)’". Note that z is in the centralizer of the
vacuum state ¢. So we have for all t € R,

o (2)Q = Atz ATHQ = 2Q).
Recall the Tomita-Takesaki theory for I'j(Hg,U;) and the vacuum state. We see
that x() is a fixed point of F,(U;), and hence (F,(P)%)(z) is an eigenvector by

orthogonal decomposition. So by the above lemma (F,(P)%)(zQ) = 0. That is,
zQ € Fy(K) and z € Ty (K, Uil k). O

Proposition 6. Let Dgr C Hyg be a real finite-dimensional Hilbert subspace and
let M be a diffuse abelian von Neumann subalgebra of T'y(Hwr,Uy) such that MQ C
Fy(D), where D = Dy +iDg. Assume x € T'y(Hg,U) N M.

(1) If z € C;(Hg, Uy), then xQ € Fy(D).

(2) If M is contained in the centralizer of T'y(Hg,U,), then x§) € F,(D).

Proof. The proof is similar to that of Theorem[3], so we only present a sketch. Since
M is diffuse and MQ C Fy (D), we may find a sequence of unitaries (uq)aeny C M
such that
Ug =ul, ud =1, u,Q— 0 weakly in F (D).

We may show that for any vector ¢ € H®" with n > 1 which is orthogonal to
Fq(D), and for w € I'y(Hg, Uy), if one of the following conditions is satisfied:

(a) w € CF(Hr, Uy);

(b) the operator z — zu, (2 is uniformly bounded on F,(H);
then

(4.2) V(uqw ugW(§)) = (Wr(&)uaQ, wus2) — 0.

Indeed, we note that the anti-linear functional z — @(uqz*uaW(§)) is uniformly
bounded on Cj(Hg,U;) with respect to a, and if (b) is satisfied, the anti-linear
functional 2Q — @(uqz*us,W(§)) is uniformly bounded on F,(H) with respect to
a. So if any one of (a) and (b) is satisfied, we may find a sequence of vectors (1),
in the algebraic span of {H®" : n > 1} such that we have the convergence

puaW () uaW(€)) = p(uawuaW(g)), k— oo,
which is uniform with respect to a. This means that in order to see ([@2) under
the condition (a) or (b), it suffices to assume that w belongs to the algebraic span

of {H®" : n > 1}. On the other hand, recall that { L F,(D), which means that ¢ is
the combination of words of the form

ey @ @ Cm. s €myseesem, € HUDYI <k <n, e, € D"

Thus by the Wick formula in Lemma[4] it suffices to prove the convergence

(r(ei) (e, )r (i, ) -7 (Irei, JuaSd, 1ej,) - - Ue;, )" (Tej, )
eI (Teg, )uaf) — 0,
where there is 1 < k < n such that e;, € D+, e, € H for1l <k < K.
By Lemma [ I.e;, € D+ holds as well. Consequently, if & > m + 1, then

r*(Lee;,,) - r*(Ire;, Jua2 = 0 and the above convergence is trivial. Hence we as-
sume k < m. Recall that

(N)rt(g) = r* (@I () =0, Uf)r*(g) = r*(@USf) = (f,9)¢" (Br>oidger),
f,g€e H.
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Now applying Lemma [I] as in Theorem [3, we obtain the desired convergence (£.2]).
Now the conclusion of the theorem is immediate. Take z € I'y(Hg, U;) N M'. We
have for all « > 1 and every £ € H®™ with n > 1 which is orthogonal to F,(D),
(€. 2Q) = p(*W(€)) = p(z*ui W (€)) = p(uaz™ua W (€)) = (Wr(§)ual, zua)
If now the assumption of (1) holds, then by (a) and ([@2]) we see that
(€, 2Q) = (W (O)ua, zus) — 0.
Similarly if the assumption of (2) holds, then the u,’s belong to the centralizer of
I';(Hg,U), and hence
l2uaQ)? = p(uaz"zua) = p(z"2u}) = p("2) = [|2Q|1%,
so (b) is satisfied. By (2] this yields that
(&, Q) = (W (O)ua, zus) — 0.
So (£, 2Q) = 0 for all words £ € F,(D)* and hence Q2 € F (D). O
We are ready to state the second main result of this article.
Theorem 7. Assume dim Hg > 2.

(1) If there exists & € Hgr such that U§oy = &, then T'y(Hg,U,) is a factor.

(2) Let Hﬂ%l),Hﬂ(g) be two finite-dimensional Hilbert subspaces of Hg which are
invariant under Uy and are orthogonal with respect to the real inner product of
Hg. Assume that for k = 1,2 the centralizer of Fq(Hﬂ(f)7 Uil ) contains a diffuse
element. Then I'y(Hg,Uy) is a factor. :

(3) Ty(Hg,Uy)' N Cy(Hg,Uy) = C1.

Proof. (1) Since dim Hg > 2 and U;&y = &, the subspace (C&)t C H is invariant
under Uy, and we may find a vector n € (C&)~* such that n € Hf, nl&. Note
that in this case W,.(n) = W,(n)* and InL&y. Take x € T'y(Hgr,U;)' N Ty (Hr,Uy)
and denote & = 2. Note that W (&) belongs to the centralizer of I';(Hg, U;) by
the assumption U;§y = &, and that the spectral measure of W (&) is ¢-semicircular
(INou06, Remarks pp. 298-299]) and hence W (&p) generates a diffuse abelian von
Neumann subalgebra. So by Proposition [6(2), we have
5 € ‘Fq((cg())a Ul@h]if
Then we see that
W(En = xW(n)Q = W(n)xQ = W(n)¢
=ImE+ 1IN =ne¢.
As a result, writing
/\:<§7Q>a <:§_>\Qa
we have
In® €12 = (n® €. W(En) = (n® €. Wo(0)) = (Wo () © ).8)
= AMWr(n)n, &) + (Wr(n)(n ® (), §)
= X[Inl*2.€) + Mn®n,6) + (1@ (@ n,¢)
= APl
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where we have used the relation nL&y in the last equality. However
In@ &l = lln® A2+ = AP [nl* + In e ¢

Thus the above two equalities yield that 7 ® ¢ = 0. Therefore ( =0 and z) = ¢ =
AQ. This proves that

Py(Hz, U)' (T (Hz, Uy) = CL.

(2) This assertion follows directly from Proposition [6(2) since according to that
result any = € I'g(Hg, Uy)’ N T'y(Hg, U;) should satisfy

2Q € Fy(HW) N F,(H?) (= CQ).

(3) Since dim Hg > 2, we may find two vectors eq, e; € Hg which are orthogonal
with respect to the real inner product of Hg. Then Wi(e;) and W{(ez) are self-
adjoint diffuse elements as discussed before, and F,(Ce;) N Fy(Cez) = CQ. Then
according to Proposition[6(1), any = € T'q(Hg, U;)' N C;(Hg, U;) should satisfy

) € ]-"q((Cel) N ‘Fq((CEQ)(: (CQ)

Therefore the assertion is proved. O
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