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REMARKS ON FACTORIALITY AND q-DEFORMATIONS

ADAM SKALSKI AND SIMENG WANG

(Communicated by Adrian Ioana)

Abstract. We prove that the mixed q-Gaussian algebra ΓQ(HR) associated
to a real Hilbert space HR and a real symmetric matrix Q = (qij) with
sup |qij | < 1, is a factor as soon as dimHR ≥ 2. We also discuss the fac-
toriality of q-deformed Araki-Woods algebras, in particular showing that the
q-deformed Araki-Woods algebra Γq(HR, Ut) given by a real Hilbert space HR

and a strongly continuous group Ut is a factor when dimHR ≥ 2 and Ut admits
an invariant eigenvector.

1. Introduction

This paper studies the factoriality of some q-deformed von Neumann algebras.
In the early 1990s, motivated by mathematical physics, Bożejko and Speicher intro-
duced the von Neumann algebra Γq(HR) generated by q-Gaussian variables [BS91].
Since then, the von Neumann algebra Γq(HR) has been widely studied, and also its
several generalizations have been introduced and fruitfully investigated. In partic-
ular, there are two interesting types of q-deformed algebras which generalize that
of Bożejko and Speicher: the first one is the mixed q-Gaussian algebra introduced
in [BS94], and the second one is the family of q-deformed Araki-Woods algebras
constructed in [Hia03].

The question of factoriality of these q-deformed Neumann algebras remained a
well-known problem in the field for many years. In 2005, Ricard [Ric05] proved that
the von Neumann algebra Γq(HR) is a factor as soon as dimHR ≥ 2, which solved

the problem for Γq(HR) in full generality (for earlier partial results see also [Śni04],
[Kró06], [BKS97]). However, the analogous problem for mixed q-Gaussian algebras
and q-deformed Araki-Woods algebras has remained open. Among the known re-
sults, the factoriality of mixed q-Gaussian algebras was proved by Królak [Kró00]
when the underlying Hilbert space is infinite-dimensional, and very recently by
Nelson and Zeng [NZ16] when the size of the deformation parameters is sufficiently
small; similarly, the factoriality of q-deformed Araki-Woods algebras was only es-
tablished by Hiai in [Hia03] when the ‘almost periodic part’ (see Section 4 for an
explanation of this term) of the underlying Hilbert space is infinite-dimensional,
and by Nelson in [Nel15] when q is small.

In this note we solve the problem of factoriality for mixed q-Gaussian algebras
in full generality, following the ideas of [Ric05]. Our methods apply also to the
q-deformed Araki-Woods algebras, and we show that the q-deformed Araki-Woods

Received by the editors August 19, 2016, and, in revised form, February 15, 2017.
2010 Mathematics Subject Classification. Primary 46L36, 46L53, 81S05.
The authors were partially supported by the NCN (National Centre of Science) grant

2014/14/E/ST1/00525.

c©2018 American Mathematical Society

3813

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13715


3814 ADAM SKALSKI AND SIMENG WANG

algebra Γq(HR, Ut) is a factor as soon as dimHR ≥ 2 and the semigroup Ut admits
an invariant eigenvector. We remark that after the completion of this work, we
learned that the last result mentioned above was also obtained independently by
Bikram and Mukherjee in [BM17], as a part of a detailed study of maximal abelian
subalgebras in q-deformed Araki-Woods algebras.

The scalar products below are always linear on the left. The plan of the paper
is as follows: in Section 2 we present a Hilbert space lemma providing estimates
for certain commutators to be used later, in Section 3 we establish the factoriality
of mixed q-Gaussian algebras in full generality, and in Section 4 we discuss sev-
eral results concerning factoriality in the context of q-Araki-Woods von Neumann
algebras.

2. A convergence lemma for q-commutation relations

The following purely Hilbert-space-theoretic lemma will play a key role in our
discussions of factoriality in the following sections.

Lemma 1. Let (Hn)n≥1 be a sequence of Hilbert spaces and write H =
⊕

n≥1 Hn.

Let r, s ∈ N and let (ai)1≤i≤r, (bj)1≤j≤s be two families of operators on H which
send each Hn into Hn+1 or Hn−1, such that there exists 0 < q < 1 with

‖(aibj − bjai)|Hn
‖ ≤ qn, n ∈ N.

Assume that Kn ⊂ Hn is a finite-dimensional Hilbert subspace for each n ≥ 1 such
that for K =

⊕
n Kn we have

ai(K) ⊂ K, 1 ≤ i ≤ r − 1, and ar|K = 0.

Then for any bounded nets (ξα), (ηα) ⊂ K such that ηα → 0 weakly, we have

〈a∗1 · · · a∗rξα, b1 · · · bsηα〉 → 0.

Proof. Put

T
(n)
ij = (aibj − bjai)|Hn

, 1 ≤ i ≤ r, 1 ≤ j ≤ s, n ≥ 1.

Then for each i we may write

aib1 · · · bsξ − b1 · · · bsaiξ =
s∑

j=1

b1 · · · bj−1T
(m(j,n))
ij bj+1 · · · bsξ, ξ ∈ Hn,

where m(j, n) is an integer greater than n− s. Iterating this formula we obtain

ar · · · a1b1 · · · bsξ
= b1 · · · bsar · · · a1ξ

+

r∑
i=1

(ar · · · aib1 · · · bsai−1 · · · a1ξ − ar · · · ai+1b1 · · · bsai · · · a1ξ)

= b1 · · · bsar · · · a1ξ

+

r∑
i=1

ar · · · ai+1

⎛
⎝

s∑
j=1

b1 · · · bj−1T
(m′(i,j,n))
ij bj+1 · · · bs

⎞
⎠ ai−1 · · · a1ξ,

where ξ ∈ Hn and for each i, j, n the integer m′(i, j, n) is greater than n − s − r.
Now we consider two bounded nets (ξα), (ηα) ⊂ K such that ηα → 0 weakly. Write

ηα = (η(n)α )n≥1, η(n)α ∈ Kn.
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We have

〈a∗1 · · · a∗rξα, b1 · · · bsηα〉 = 〈ξα, ar · · · a1b1 · · · bsηα〉,
and by the assumptions ar · · · a1ηα = 0, so together with the previous computations
for ar · · · a1b1 · · · bsξ, we obtain

(2.1) 〈a∗1 · · · a∗rξα, b1 · · · bsηα〉 =
∑
n≥1

〈ξα, Tnη
(n)
α 〉,

where

Tn =

r∑
i=1

ar · · · ai+1

⎛
⎝

s∑
j=1

b1 · · · bj−1T
(m′(i,j,n))
ij bj · · · bs

⎞
⎠ ai−1 · · · a1.

Recall that ‖T (k)
ij ‖ ≤ qk for all i, j, k by assumption. So for each α and n

‖Tnη
(n)
α ‖ ≤ C(q, r, s)qn‖η(n)α ‖,

where C(q, r, s) is a constant independent of n. Together with (2.1) we have

|〈a∗1 · · · a∗rξα, b1 · · · bsηα〉| ≤ C(q, r, s) sup
α

‖ξα‖
∑
n≥1

qn‖η(n)α ‖.(2.2)

Since ηα → 0 weakly, we have for each N ≥ 1,

N∑
n=1

qn‖η(n)α ‖ −→
α

0,

and on the other hand,
∑
n≥N

qn‖η(n)α ‖ ≤ sup
n

‖η(n)α ‖qN/(1− q).

Therefore by (2.2) we get

∀N ≥ 1, lim sup
α

|〈a∗1 · · · a∗rξα, b1 · · · bsηα〉| ≤ C ′(r, s, q)qN ,

with a constant C ′(r, s, q) independent of N , which means that

〈a∗1 · · · a∗rξα, b1 · · · bsηα〉 → 0,

as desired. �

3. Factoriality of mixed q-Gaussian algebras

Let N ∈ N, let Q = (qij)
N
i,j=1 be a symmetric matrix with qij ∈ (−1, 1), and let

HR be a finite-dimensional real Hilbert space with orthonormal basis e1, . . . , eN .
We recall briefly the construction of mixed Gaussian algebras, as introduced in
[BS94]. Write H = HR + iHR to be the complexification of HR. Let FQ(H) be the
Fock space associated to the Yang-Baxter operator

T : H ⊗H → H ⊗H, ei ⊗ ej �→ qijej ⊗ ei

constructed in [BS94]. Denote by 〈·, ·〉 the inner product on FQ(H) and let Ω be
the vacuum vector. Denote by ϕ(·) = 〈·Ω,Ω〉 the vacuum state. The left creation
operators li are defined by the formulas

liξ = ei ⊗ ξ, ξ ∈ FQ(H),



3816 ADAM SKALSKI AND SIMENG WANG

and their adjoints, the left annihilation operators, can be characterized by equalities

l∗iΩ = 0,

l∗i (ej1 ⊗ · · · ⊗ ejn) =
n∑

k=1

δi,jkqij1 · · · qijk−1
ej1 ⊗ · · · ⊗ ejk−1

⊗ ejk+1
⊗ · · · ⊗ ejn .

Similarly, we have the right creation/annihilation operators

riξ = ξ ⊗ ei, ξ ∈ FQ(H),

r∗iΩ = 0,

r∗i (ej1 ⊗ · · · ⊗ ejn) =

n∑
k=1

δi,jkqijk+1
· · · qijnej1 ⊗ · · · ⊗ ejk−1

⊗ ejk+1
⊗ · · · ⊗ ejn .

We consider the associated mixed q-Gaussian algebra ΓQ(HR) generated by the
self-adjoint variables sj = l∗j + lj . Denote

q = max
i,j

|qij | < 1.

By a word in FQ(H) we mean a vector in FQ(H) of the form ζ1 ⊗ · · · ⊗ ζn with
some n ≥ 1 and ζ1, . . . , ζn ∈ H. Królak [Kró00] proved that any word ξ ∈ FQ(H)
corresponds to a Wick product W (ξ) ∈ ΓQ(HR) with W (ξ)Ω = ξ. Also, [BS94]
remarked that JΓQ(HR)J is the commutant of ΓQ(HR), where J is the conjugation
operator given by

J(ei1 ⊗ · · · ⊗ ein) = ein ⊗ · · · ⊗ ei1 .

We write

Wr(ξ) = JW (Jξ)J, ξ ∈ ⊕nH
⊗n.

Then Wr(ξ) ∈ ΓQ(HR)
′.

Lemma 2. For each n ∈ N and i, j = 1, . . . , N the operators T
(n)
i on H⊗n char-

acterized by the equalities

l∗i rj − rj l
∗
i = δij ⊕n T

(n)
i

satisfy the norm estimate ‖T (n)
i ‖ ≤ qn.

Proof. The case of n = 0 is obvious and we take n ≥ 1 in the following. Observe
that

l∗i rj(ej1 ⊗ · · · ⊗ ejn) = l∗i (ej1 ⊗ · · · ⊗ ejn ⊗ ej)

=
n∑

k=1

δi,jkqij1 · · · qijk−1
ej1 ⊗ · · · ⊗ ejk−1

⊗ ejk+1
⊗ · · · ⊗ ejn ⊗ ej

+ δijqij1 · · · qijnej1 ⊗ · · · ⊗ ejn ,

and

rjl
∗
i (ej1 ⊗ · · · ⊗ ejn) =

n∑
k=1

δi,jkqij1 · · · qijk−1
ej1 ⊗ · · · ⊗ ejk−1

⊗ ejk+1
⊗ · · · ⊗ ejn ⊗ ej .

Now take

T
(n)
i : H⊗n → H⊗n, ej1 ⊗ · · · ⊗ ejn �→ δijqij1 · · · qijnej1 ⊗ · · · ⊗ ejn .
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The eigenspace of T
(n)
i corresponding to δijqij1 · · · qijn is spanned by the vectors

of the type E{j1,...,jn} = {ej′1 ⊗ · · · ⊗ ej′n : qij1 · · · qijn = qij′1 · · · qij′n}, which are
orthogonal for distinct j = {j1, . . . , jn}. So

‖T (n)
i ‖ ≤ max{qij1 · · · qijn : 1 ≤ j1, . . . , jn ≤ N} ≤ qn

and T
(n)
i is the desired operator. �

Now the following main result is in reach. The idea is partially inspired by the
proof in [Ric05] in conjunction with Lemma 1.

Theorem 3. For each 1 ≤ i ≤ n, the von Neumann subalgebra generated by si is
maximal abelian in ΓQ(HR). In particular, ΓQ(HR) is a factor if n ≥ 2.

Proof. By [BKS97], we know that the spectral measure of si is the q-semicircular
law with q = qii. Therefore the von Neumann algebra M generated by si is diffuse
and abelian, and hence isomorphic to the von Neumann algebra L∞([0, 1], dm)
where dm denotes the Lebesgue measure on [0, 1]. As a result, we may find a
sequence of unitaries (uα)α∈N ⊂ M which correspond to Rademacher functions via
this isomorphism. In particular, we have

uα = u∗
α, u2

α = 1, uαΩ → 0 weakly in FQ(H).

Now assume x ∈ ΓQ(HR) with xsi = six, and hence

xy = yx, y ∈ M.

Let FQ(Cei) ⊂ FQ(H) be the Fock space associated to ei. Observe that for any
vector ξ ∈

⋃
m∈N

H⊗m and all α ≥ 1 we have
(3.1)
〈ξ, xΩ〉 = ϕ(x∗W (ξ)) = ϕ(x∗u2

αW (ξ)) = ϕ(uαx
∗uαW (ξ)) = 〈Wr(ξ)uαΩ, xuαΩ〉.

We remark that if further ξ is orthogonal to FQ(Cei), then

(3.2) ∀y ∈ ΓQ(HR), 〈Wr(ξ)uαΩ, yuαΩ〉 → 0.

To see this, it suffices to consider the case yΩ ∈ H⊗n for an arbitrary n ≥ 0
since it is easy to see that the functionals y∗Ω �→ 〈Wr(ξ)uαΩ, yuαΩ〉 extend to
uniformly bounded functionals on FQ(H) thanks to the traciality of ϕ ([BS94,
Theorem 4.4]). Now by the Wick formula in [Kró00, Theorem 1], it is enough to
prove the convergence

(3.3) 〈ri1 · · · risr∗is+1
· · · r∗ipuαΩ, lj1 · · · ljt l∗jt+1

· · · l∗jquαΩ〉 → 0

for any fixed indices i1, . . . , ip, j1, . . . , jq with some ik �= i. Denote

s′ = min{k : ik �= i}.
If s′ > s, we have r∗is′ · · · r

∗
ip
uαΩ = 0 for all α ≥ 1 and the convergence (3.3) becomes

trivial. So we assume in the following s′ ≤ s. Note that by definition

rilj − ljri = 0, r∗i l
∗
j − l∗j r

∗
i = 0,

and by Lemma 2

‖(l∗i rj − rj l
∗
i )|H⊗n‖ ≤ qn, n ≥ 1.

Also, observe that by the choice of s′,

r∗is′ |FQ(Rei) = 0, r∗ik(FQ(Rei)) ⊂ FQ(Rei), 1 ≤ k < s′.
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So now applying Lemma 1 to the families of operators r∗i1 , . . . , r
∗
is′

and lj1 , . . . , ljt ,

l∗jt+1
, . . . , l∗jq , we obtain the convergence (3.3). As a consequence, the convergence

(3.2) holds as well, which, together with (3.1), yields that

〈ξ, xΩ〉 = 0.

This means that xΩ ∈ FQ(Cei) since ξ is arbitrarily chosen in a dense subset of
FQ(Cei)

⊥. We can then deduce that x ∈ M using the second quantization of the
projection P : HR → Rei (see [LP99, Lemma 3.1]). Thus we have shown that the
von Neumann subalgebra M generated by si is maximal abelian in ΓQ(HR).

Also, if x ∈ ΓQ(HR) ∩ ΓQ(HR)
′, then the above argument shows that xΩ ∈⋂n

i=1 FQ(Cei), so xΩ ∈ CΩ. Therefore ΓQ(HR) is a factor. �

4. Factoriality of q-Araki-Woods algebras

Now we discuss the factoriality of q-Araki-Woods algebras. We refer to [Hia03]
for the detailed description of the construction of these algebras and only sketch
the outline below. Following the notation of [Hia03], given a real Hilbert space HR

with a strongly continuous group Ut of orthogonal transformations on HR, we may
introduce a deformed inner product 〈·, ·〉U on HC := HR + iHR. Denote by H the
completion of HC with respect to 〈·, ·〉U and denote by Fq(H) the q-Fock space
associated to H. We define the left and right creation operators

l(ξ)η = ξ ⊗ η, r(ξ)η = η ⊗ ξ, ξ ∈ H, η ∈ Fq(H),

and the left and right annihilation operators

l∗(ξ) = l(ξ)∗, r∗(ξ) = r(ξ)∗, ξ ∈ H.

We denote by Γq(HR, Ut) (resp., C∗
q (HR, Ut)) the von Neumann algebra (resp.,

C*-algebra) generated by {l(e) + l∗(e) : e ∈ HR} in B(Fq(H)), to be called the
q-Araki-Woods von Neumann algebra. Properties of the vacuum state guarantee
the existence of the Wick product map W : Γq(HR, Ut)Ω → Γq(HR, Ut) such that
W (ξ)Ω = ξ. On the other hand, denote

H ′
R = {ξ ∈ H : ∀η ∈ HR, 〈ξ, η〉 ∈ R}.

Then the von Neumann algebra Γq,r(HR, Ut) generated by {r(e) + r∗(e) : e ∈ H ′
R
}

in B(Fq(H)) is the commutant of Γq(HR, Ut), and again there exists a right Wick
product Wr : Γq,r(HR, Ut)Ω → Γq,r(HR, Ut) such that Wr(ξ)Ω = ξ. We denote by I
the standard complex conjugation on HR+iHR, and by Ir the complex conjugation
on H ′

R
+ iH ′

R
. The following observations are well known and we state them here

for later use.

Lemma 4. (1) Suppose that e1, . . . , en ∈ HC. Then we have the following Wick
formula:
(4.1)

W (e1 ⊗ · · · ⊗ en) =

n∑
k=0

∑
i1,...,ik,jk+1,...,jn

l(ei1) . . . l(eik)l
∗(Iejk+1

) . . . l∗(Iejn)q
i(I1,I2),

where I1 = {i1, . . . , ik} and I2 = {jk+1, . . . , jn} form a partition of the set {1, . . . , n}
and i(I1, I2) is the number of crossings. A similar formula holds for Wr(e1⊗· · ·⊗en)
as well.

(2) Let f ∈ HR, e ∈ H ′
R
+ iH ′

R
. If 〈e, f〉 = 0; then 〈Ire, f〉 = 0.
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Proof. (1) See [BKS97, Proposition 2.7], [Was17, Lemma 3.1].
(2) Write e = e1 + ie2 with e1, e2 ∈ H ′

R
. Since 〈e1, f〉 ∈ R, 〈e2, f〉 ∈ R, we see

that the identity 〈e, f〉 = 0 yields

〈e1, f〉 = 〈e2, f〉 = 0.

Therefore

〈Ire, f〉 = 〈e1 − ie2, f〉 = 0.

�

According to Shlyakhtenko [Shl97], we have the decomposition

(HR, Ut) = (KR, U
′
t)⊕ (LR, U

′′
t ),

where U ′
t is almost periodic and U ′′

t is ergodic. Then KR ⊂ HR is the real closed
subspace spanned by eigenvectors of Ut = Ait. Let KC = KR + iKR be the com-
plexification and K be the completion of KC with respect to the deformed norm
as above, and similarly for L. Note that the orthogonal projection P : HR → KR

commutes with Ut. So by the second quantization, Γq(KR, Ut|K) embeds as a von
Neumann subalgebra of Γq(HR, Ut). For an operator T we denote by Fq(T ) its
second quantization.

The following observation shows that in looking at the center of the q-Araki-
Woods algebra it suffices to consider the ‘K-part’ of the algebra (we do not really
use this fact in what follows).

Lemma 5. (1) The semigroup Fq(Ut) admits no eigenvectors in Fq(K)⊥ ⊂ Fq(H);
(2) Assume x ∈ Γq(HR, Ut) ∩ Γq(HR, Ut)

′. Then

xΩ ∈ Fq(K) and x ∈ Γq(KR, Ut|KR
).

Proof. (1) Let (ei) be an orthonormal basis in HR. Since Fq(P ) is the orthogonal
projection onto Fq(K), we have

Fq(P )(Fq(K)⊥) = 0.

Hence

Fq(K)⊥ = span{ei1 ⊗ · · · ⊗ ein : n ≥ 1 ∃1 ≤ m ≤ n, eim ∈ LR}.
Denote

Kn=span{ei1 ⊗· · ·⊗ein ∈Fq(K)⊥}=span{Hi1 ⊗· · ·⊗Hin , Hi=K or L, ∃Hi = L}.
Note that Ut is unitarily equivalent to a multiplier map on some L2(μ). So by the
definition of K and L and the fact that at least one of Hik is equal to L, it is easy
to see that Fq(Ut)|Hi1

⊗···⊗Hin
= Ut|Hi1

⊗· · ·⊗Ut|Hin
admits no eigenvectors. Since

each Hin is invariant under Ut, Fq(Ut) admits no eigenvectors in Kn either. Then
the lemma follows immediately. Indeed, let

ξ =
∑
n

ξn ∈ Fq(K)⊥, ξn ∈ Kn,

be an eigenvector. Then we get
∑
n

(Utξn − λξn) = 0

for some λ and hence Utξn − λξn = 0 for all n, which yields a contradiction.
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(2) Assume x ∈ Γq(HR, Ut)∩Γq(HR, Ut)
′. Note that x is in the centralizer of the

vacuum state ϕ. So we have for all t ∈ R,

σt(x)Ω = ΔitxΔ−itΩ = xΩ.

Recall the Tomita-Takesaki theory for Γq(HR, Ut) and the vacuum state. We see
that xΩ is a fixed point of Fq(Ut), and hence (Fq(P )⊥)(xΩ) is an eigenvector by
orthogonal decomposition. So by the above lemma (Fq(P )⊥)(xΩ) = 0. That is,
xΩ ∈ Fq(K) and x ∈ Γq(KR, Ut|K). �

Proposition 6. Let DR ⊂ HR be a real finite-dimensional Hilbert subspace and
let M be a diffuse abelian von Neumann subalgebra of Γq(HR, Ut) such that MΩ ⊂
Fq(D), where D = DR + iDR. Assume x ∈ Γq(HR, Ut) ∩M ′.

(1) If x ∈ C∗
q (HR, Ut), then xΩ ∈ Fq(D).

(2) If M is contained in the centralizer of Γq(HR, Ut), then xΩ ∈ Fq(D).

Proof. The proof is similar to that of Theorem 3, so we only present a sketch. Since
M is diffuse and MΩ ⊂ Fq(D), we may find a sequence of unitaries (uα)α∈N ⊂ M
such that

uα = u∗
α, u2

α = 1, uαΩ → 0 weakly in Fq(D).

We may show that for any vector ξ ∈ H⊗n with n ≥ 1 which is orthogonal to
Fq(D), and for w ∈ Γq(HR, Ut), if one of the following conditions is satisfied:

(a) w ∈ C∗
q (HR, Ut);

(b) the operator zΩ �→ zuαΩ is uniformly bounded on Fq(H);
then

(4.2) ϕ(uαw
∗uαW (ξ)) = 〈Wr(ξ)uαΩ, wuαΩ〉 → 0.

Indeed, we note that the anti-linear functional z �→ ϕ(uαz
∗uαW (ξ)) is uniformly

bounded on C∗
q (HR, Ut) with respect to α, and if (b) is satisfied, the anti-linear

functional zΩ �→ ϕ(uαz
∗uαW (ξ)) is uniformly bounded on Fq(H) with respect to

α. So if any one of (a) and (b) is satisfied, we may find a sequence of vectors (ηk)
∞
k=1

in the algebraic span of {H⊗n : n ≥ 1} such that we have the convergence

ϕ(uαW (ηk)
∗uαW (ξ)) → ϕ(uαw

∗uαW (ξ)), k → ∞,

which is uniform with respect to α. This means that in order to see (4.2) under
the condition (a) or (b), it suffices to assume that w belongs to the algebraic span
of {H⊗n : n ≥ 1}. On the other hand, recall that ξ⊥Fq(D), which means that ξ is
the combination of words of the form

em1
⊗ · · · ⊗ emn

, em1
, . . . , emn

∈ H ∪D⊥∃1 ≤ k ≤ n, emk
∈ D⊥.

Thus by the Wick formula in Lemma 4, it suffices to prove the convergence

〈r(ei1) · · · r(eim)r∗(Ireim+1
) · · · r∗(Irein)uαΩ, l(ej1) · · · l(ejs)l∗(Iejs+1

)

· · · l∗(Iejp)uαΩ〉 → 0,

where there is 1 ≤ k ≤ n such that eik ∈ D⊥, eik′ ∈ H for 1 ≤ k < k′.

By Lemma 4, Ireik ∈ D⊥ holds as well. Consequently, if k ≥ m + 1, then
r∗(Ireik) · · · r∗(Irein)uαΩ = 0 and the above convergence is trivial. Hence we as-
sume k ≤ m. Recall that

l∗(f)r∗(g)− r∗(g)l∗(f) = 0, l(f)r∗(g)− r∗(g)l(f) = 〈f, g〉qk (⊕k≥0idH⊗k) ,

f, g ∈ H.
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Now applying Lemma 1 as in Theorem 3, we obtain the desired convergence (4.2).
Now the conclusion of the theorem is immediate. Take x ∈ Γq(HR, Ut)∩M ′. We

have for all α ≥ 1 and every ξ ∈ H⊗n with n ≥ 1 which is orthogonal to Fq(D),

〈ξ, xΩ〉 = ϕ(x∗W (ξ)) = ϕ(x∗u2
αW (ξ)) = ϕ(uαx

∗uαW (ξ)) = 〈Wr(ξ)uαΩ, xuαΩ〉.
If now the assumption of (1) holds, then by (a) and (4.2) we see that

〈ξ, xΩ〉 = 〈Wr(ξ)uαΩ, xuαΩ〉 → 0.

Similarly if the assumption of (2) holds, then the uα’s belong to the centralizer of
Γq(HR, Ut), and hence

‖zuαΩ‖2 = ϕ(uαz
∗zuα) = ϕ(z∗zu2

α) = ϕ(z∗z) = ‖zΩ‖2,
so (b) is satisfied. By (4.2) this yields that

〈ξ, xΩ〉 = 〈Wr(ξ)uαΩ, xuαΩ〉 → 0.

So 〈ξ, xΩ〉 = 0 for all words ξ ∈ Fq(D)⊥ and hence xΩ ∈ Fq(D). �

We are ready to state the second main result of this article.

Theorem 7. Assume dimHR ≥ 2.
(1) If there exists ξ0 ∈ HR such that Utξ0 = ξ0, then Γq(HR, Ut) is a factor.

(2) Let H
(1)
R

, H
(2)
R

be two finite-dimensional Hilbert subspaces of HR which are
invariant under Ut and are orthogonal with respect to the real inner product of

HR. Assume that for k = 1, 2 the centralizer of Γq(H
(k)
R

, Ut|H(k)
R

) contains a diffuse

element. Then Γq(HR, Ut) is a factor.
(3) Γq(HR, Ut)

′ ∩ C∗
q (HR, Ut) = C1.

Proof. (1) Since dimHR ≥ 2 and Utξ0 = ξ0, the subspace (Cξ0)
⊥ ⊂ H is invariant

under Ut, and we may find a vector η ∈ (Cξ0)
⊥ such that η ∈ H ′

R
, η⊥ξ0. Note

that in this case Wr(η) = Wr(η)
∗ and Iη⊥ξ0. Take x ∈ Γq(HR, Ut)

′ ∩ Γq(HR, Ut)
and denote ξ = xΩ. Note that W (ξ0) belongs to the centralizer of Γq(HR, Ut) by
the assumption Utξ0 = ξ0, and that the spectral measure of W (ξ0) is q-semicircular
([Nou06, Remarks pp. 298-299]) and hence W (ξ0) generates a diffuse abelian von
Neumann subalgebra. So by Proposition 6(2), we have

ξ ∈ Fq(Cξ0), η⊥ξ, Iη⊥ξ.

Then we see that

W (ξ)η = xW (η)Ω = W (η)xΩ = W (η)ξ

= l(η)ξ + l∗(Iη)ξ = η ⊗ ξ.

As a result, writing

λ = 〈ξ,Ω〉, ζ = ξ − λΩ,

we have

‖η ⊗ ξ‖2 = 〈η ⊗ ξ,W (ξ)η〉 = 〈η ⊗ ξ,Wr(η)ξ〉 = 〈Wr(η)(η ⊗ ξ), ξ〉
= λ〈Wr(η)η, ξ〉+ 〈Wr(η)(η ⊗ ζ), ξ〉
= λ〈‖η‖2Ω, ξ〉+ λ〈η ⊗ η, ξ〉+ 〈η ⊗ ζ ⊗ η, ξ〉
= |λ|2‖η‖2,
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where we have used the relation η⊥ξ0 in the last equality. However

‖η ⊗ ξ‖2 = ‖η ⊗ (λΩ+ ζ)‖2 = |λ|2‖η‖2 + ‖η ⊗ ζ‖2.
Thus the above two equalities yield that η ⊗ ζ = 0. Therefore ζ = 0 and xΩ = ξ =
λΩ. This proves that

Γq(HR, Ut)
′ ∩ Γq(HR, Ut) = C1.

(2) This assertion follows directly from Proposition 6(2) since according to that
result any x ∈ Γq(HR, Ut)

′ ∩ Γq(HR, Ut) should satisfy

xΩ ∈ Fq(H
(1)) ∩ Fq(H

(2))(= CΩ).

(3) Since dimHR ≥ 2, we may find two vectors e1, e2 ∈ HR which are orthogonal
with respect to the real inner product of HR. Then W (e1) and W (e2) are self-
adjoint diffuse elements as discussed before, and Fq(Ce1) ∩ Fq(Ce2) = CΩ. Then
according to Proposition 6(1), any x ∈ Γq(HR, Ut)

′ ∩ C∗
q (HR, Ut) should satisfy

xΩ ∈ Fq(Ce1) ∩ Fq(Ce2)(= CΩ).

Therefore the assertion is proved. �
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ul. Śniadeckich 8, 00–956 Warszawa, Poland

Current address: Universität des Saarlandes, FR 6.1-Mathematik, 66123 Saarbrücken, Ger-
many

Email address: wang@math.uni-sb.de

http://www.ams.org/mathscinet-getitem?mr=2164947
http://www.ams.org/mathscinet-getitem?mr=1444786
http://www.ams.org/mathscinet-getitem?mr=2053944
http://www.ams.org/mathscinet-getitem?mr=3717957

	1. Introduction
	2. A convergence lemma for 𝑞-commutation relations
	3. Factoriality of mixed 𝑞-Gaussian algebras
	4. Factoriality of 𝑞-Araki-Woods algebras
	Acknowledgments
	References

