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HANDLE DECOMPOSITIONS OF RATIONAL HOMOLOGY

BALLS AND CASSON–GORDON INVARIANTS

PAOLO ACETO, MARCO GOLLA, AND ANA G. LECUONA

(Communicated by David Futer)

Abstract. Given a rational homology sphere which bounds rational homol-
ogy balls, we investigate the complexity of these balls as measured by the
number of 1-handles in a handle decomposition. We use Casson–Gordon in-
variants to obtain lower bounds which also lead to lower bounds on the fusion
number of ribbon knots. We use Levine–Tristram signatures to compute these
bounds and produce explicit examples.

1. Introduction

Given two concordant knots it is natural to ask how complicated a concordance
between them must be. A similar question can be asked about (rational) homology
cobordant 3-manifolds and cobordisms between them. Very little is known about
these two simple and natural questions.

In the context of knot concordance a natural notion of complexity already con-
sidered by several authors [12] is that of the fusion number of a ribbon knot, i.e.,
the minimal number of 1-handles needed to construct a ribbon disc. The analo-
gous notion for homology spheres bounding a homology ball, in the integral and
rational case, is the minimum number of 1-handles needed to construct such a
ball. These numerical invariants encode deep 4-dimensional information on knots
and 3-manifolds and are extremely hard to compute. Motivation in this direction
also comes from analogous questions which are purely 4-dimensional. One of the
oldest open problems in smooth 4-manifold topology asks whether every smooth
simply-connected 4-manifold admits a handle decomposition with no 1-handles.

In this paper we investigate the complexity of rational homology balls (as mea-
sured by the number of handles in their handle decompositions) bounded by a given
rational homology sphere. More precisely we consider the following question.

Question 1.1. Let Y be a rational homology sphere which bounds a rational
homology ball. What is the minimal number of 1-handles needed to realise a rational
homology ball bounded by Y ? What if we restrict to those rational homology balls
constructed only with handles of index at most 2?
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We provide lower bounds on these numbers using Casson–Gordon signature in-
variants, which associate to a rational homology sphere Y and a character ϕ :
H1(Y ;Z) → C∗ the rational number σ(Y, ϕ). One of the key features of our ap-
proach is the use of characters of non-prime order. We relate this number to handle
decompositions of rational homology balls bounding Y via the following statement.

Theorem 1.2. Let Y be a 3-manifold that bounds a rational homology ball W , and
let ϕ : H1(Y ) → C∗ be a non-trivial character that factors through H1(W ). Every
handle decomposition of W contains at least |σ(Y, ϕ)| − 1 odd-index handles.

A particularly simple case in which we can use the above theorem is when
any given character on the 3-manifold factors through any rational homology ball
bounded by it. One example of this situation is described in the following corollary,
where Ck denotes the cyclic group with k elements, viewed as the subgroup of C∗

generated by a root of unity of order k. Notice that in the next corollary the only
restriction we are imposing on H1(Y ) is that this group is cyclic. If Y bounds a
rational homology ball, it follows from the long exact sequence of the pair that the
order of H1(Y ) is a square.

Corollary 1.3. Let Y be a 3-manifold with H1(Y ) cyclic of order m2 and let ϕ :
H1(Y ) → Ck be a non-trivial character with k|m. If W is a rational homology ball
with ∂W = Y , then every handle decomposition of W contains at least |σ(Y, ϕ)|−1
odd-index handles.

In order to produce specific examples we need an efficient way to compute
Casson–Gordon invariants. Using work of Cimasoni and Florens and focusing on
3-manifolds obtained via Dehn surgery on knots we reduce our problem to a compu-
tation of Levine–Tristram signatures. We denote by S3

r (K) the manifold obtained
by performing a surgery of slope r on a knot K ⊂ S3 and by σK(ω) the Levine–
Tristram signature of K evaluated at ω.

Proposition 1.4. If S3
m2(K) bounds a rational homology ball W with one 1-handle

and no 3-handles, then |1 − σK(e2aπi/m) − 2a(m − a)| ≤ 1 for every 1 ≤ a < m
such that (a,m) = 1.

Note that S3
m2(K) bounds a rational homology ball with one 1-handle and no

3-handles if and only if it can be obtained via Dehn surgery on a knot in S1 × S2,
and therefore we obtain an obstruction for this last property as well.

The examples obtained include the following:

• the connected sum of lens spaces L(25, 21)#L(4, 3) bounds no rational ho-
mology ball with a single 1-handle and it bounds one built with two 1-
handles and two 2-handles;

• the 3-manifold S3
400(T4,25;2,201) (here T4,25;2,201 is the (2, 201)-cable of the

torus knot T4,25) bounds no rational homology ball with a single 1-handle
and it bounds one built with three 1-handles and three 2-handles.

Finally we use this machinery to provide lower bounds on the fusion number
of ribbon knots, i.e., the minimal number of 1-handles used to construct a ribbon
disc (see Corollary 2.3). This is done by looking at the double cover of the 4-ball,
branched over any ribbon disc; this is well known to be a rational homology ball
built only with handles of index at most 2. Moreover, the number of 1-handles used
is the number of bands in the ribbon disc, and hence we can apply Theorem 1.2
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to give a bound on the number of bands. In fact, other bounds can be given by
looking at cyclic covers whose order is a prime power.

Organisation of the paper. In Section 2 we develop the lower bounds based on
Casson–Gordon signatures and, in specific situations, we relate these invariants to
Levine–Tristram signatures. In Section 3 we give some examples.

2. Casson–Gordon signatures and handle decompositions

We briefly recall the definition of Casson–Gordon signature invariants [6] and
set up some notation. In what follows H∗(X) will denote the homology of X with
integer coefficients and Cm the cyclic group of m elements.

Let (Y, ϕ) be a rational homology 3-sphere with a multiplicative character ϕ :
H1(Y ) → Cm ⊂ C∗. Since the bordism group Ω3(K(Cm, 1)) is finite for each
m ∈ Z+, there is r ∈ Z+ such that r copies of (Y, ϕ) bound a pair (X,ψ), where
X is a 4-manifold and ψ : H1(X) → Cm ⊂ C∗ restricts to ϕ on each of the r
boundary components. Note that we make no assumption on the surjectivity of ϕ
onto Cm ⊂ C∗.

Let X̃ denote the m-fold cover of X corresponding to ψ with a group of deck
transformations isomorphic to Cm. This action induces a Z[Cm]-module structure

onH2(X̃). Recall that given ζm, a primitive root of unity of orderm, the cyclotomic
field Q(ζm) is a natural Z[Cm]-module and we can define the twisted homology
group

Hψ
2 (X;Q(ζm)) := H2(X̃;Q)⊗Z[Cm] Q(ζm).

This group admits a C-valued Hermitian intersection form whose signature will be
denoted by σψ(X). The signature of the standard intersection pairing on H2(X)
will be denoted by σ(X). The Casson–Gordon signature invariant of the pair (Y, ϕ)
is given by the difference

(1) σ(Y, ϕ) :=
1

r

(
σψ(X)− σ(X)

)
.

Our main result provides a bound on the complexity of rational homology balls in
terms of their handle decompositions. The proof of this result is very similar in
nature to the one in the original paper of Casson and Gordon [6, Theorem 1] but
with a different application in mind.

Theorem 2.1. Let Y be a 3-manifold that bounds a rational homology ball W , and
let ϕ : H1(Y ) → C∗ be a non-trivial character that factors through H1(W ). Every
handle decomposition of W contains at least |σ(Y, ϕ)| − 1 odd-index handles.

Proof. Let ψ : H1(W ) → C∗ be a character that extends ϕ, namely, ϕ = ψ ◦ i∗,
where i : Y ↪→ W is the inclusion. We shall use the manifold W to compute σ(Y, ϕ)
as in (1). In this case r = 1, and since W is a rational homology ball, H2(W ) is
torsion and hence σ(W ) = 0. Therefore, in (1) we are only concerned with the first
summand, σψ(W ).

We denote by W̃ the covering associated to ψ and fix m to be the order of
ψ(H1(W )) ⊂ C∗. Any cell decomposition of W induces a chain complex of the

covering C∗(W̃ ), which we view as generated over Z[Cm] by one lift of each cell
in the given decomposition of W . The module structure allows us to consider the
twisted chain complex

Cψ
k (W ;Q(ζm)) := Ck(W̃ )⊗Z[Cm] Q(ζm),
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with associated homology Hψ
∗ (W ;Q(ζm)) and Euler characteristic χψ(W ). Note

that, since W is a rational homology ball and has χ(W ) = 1, then also χψ(W ) = 1.

Moreover, observe that the kth twisted Betti number bψk (W ) := rkHψ
k (W ;Q(ζm))

of W is bounded from above by the number nk of k-cells in the decomposition of
W .

The quantity σψ(W ) in formula (1) is obviously bounded by bψ2 (W ), and since

ψ is non-trivial by assumption, Hψ
0 (W ;Q(ζm)) = 0. Therefore, since

1 = χψ(W ) = −bψ1 (W ) + bψ2 (W )− bψ3 (W ),

we have

|σ(Y, ϕ)| = |σψ(W )| ≤ bψ2 (W ) = 1 + bψ1 (W ) + bψ3 (W ) ≤ 1 + n1 + n3,

as desired. �

The statement of Theorem 2.1 requires that a character defined on a 3-manifold
extends over a rational homology 4-ball. In Corollary 2.2 we deal with a particular
case in which the character automatically extends, and in Corollary 2.3 we give a
bound on the fusion number of ribbon knots.

Corollary 2.2. Let Y be a 3-manifold with H1(Y ) cyclic of order m2 and let ϕ :
H1(Y ) → Ck be a non-trivial character with k|m. If W is a rational homology ball
with ∂W = Y , then every handle decomposition of W contains at least |σ(Y, ϕ)|−1
odd-index handles.

Proof. Using the long exact sequence for the pair (W,Y ), it is not difficult to show
that the image of i∗ : H1(Y ) → H1(W ) has order m. It follows that, whenever k|m,
ker i∗ ⊂ kerϕ, and hence ϕ factors through the image of i∗, giving ψ0 : i∗(H1(Y )) →
Q/Z, where we look at Q/Z as the set of roots of unity in C∗. Since Q/Z is an
injective Z-module, we can extend ψ0 to H1(W ), hence obtaining an extension
ψ : H1(W ) → Q/Z ⊂ C∗.

Therefore, the assumptions of Theorem 2.1 are satisfied, and the result follows.
�

We now turn to give a lower bound on the fusion number of a ribbon knot. In
what follows, given a knot K ⊂ S3, we will denote with detK the determinant of
K and with Σ(K) the double cover of S3 branched over K.

Corollary 2.3. Let K be a ribbon knot with fusion number b. Then

b ≥ min
H

max
ϕ

|σ(Σ(K), ϕ)| − 1,

where the minimum is taken over all subgroups H < H1(Σ(K)) of index
√
|detK|

and the maximum is taken over all characters ϕ whose kernel contains H.

Proof. Let D be a disk in the 4-ball realizing the fusion number for K. The double
cover of B4 branched over D is a rational homology ball W bounded by Σ(K),
the double cover of S3 branched over K. By Theorem 2.1, from every character ϕ
defined on H1(Σ(K)) which extends over the rational homology ball we obtain a
lower bound, |σ(Y, ϕ)|−1, on the number of odd-index handles in any decomposition
of W . Now, since D is a ribbon disk, W can be built with no 3-handles and with
only b 1-handles, and thus we obtain

(2) b ≥ max{|σ(Y, ϕ)| − 1 : ϕ factors through H1(W )}.
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It is well known that the order of H1(Σ(K)) is equal to |detK| and, since there

are no 3-handles in W , the order of H1(W ) equals
√
|detK| and the map i∗ :

H1(Σ(K)) → H1(W ) induced by the inclusion i : Σ(K) ↪→ W is a surjection.
Notice that the character ϕ factors through H1(W ) if and only if ker i∗ ⊂ kerϕ.

For this to happen it is necessary that ϕ vanishes on a subgroup of order
√
|detK|.

In order to give an obstruction on all possible rational homology balls, we need
to minimize the right-hand side in (2) over all subgroups H < H1(Σ(K)) of index√
|detK|. �

Remark 2.4. A more general statement can be given in terms of cyclic branched
covers of order a prime power q = ph that we denote with Σq(K). In this more
general setting, a ribbon disc with b bands yields a rational homology 4-ball built
with (q − 1)b 1-handles, and therefore one obtains

b ≥ max
q

{
1

q − 1
min
H

max
ϕ

|σ(Σq(K), ϕ)| − 1

}
,

where the outer maximum is taken over all prime powers q, the minimum is taken
over all subgroups H < H1(Σq(K)) of order divisible by

√
|H1(Σq(K))|, and the

inner maximum is taken over all characters ϕ that vanish on H.

If the character ϕ satisfying the assumptions of the above theorem is of prime
power order, then by [6] we know that |σ(Σ(K), ϕ)| ≤ 1, and therefore we obtain
no bound on b. Corollary 2.3 is of interest when the order of the character is not
a prime power, and examples of non-trivial bounds will be discussed in the next
section.

We now focus on the special case of 3-manifolds Y obtained as surgery on a knot
K ⊂ S3. We shall denote such manifolds as S3

r (K), where r ∈ Q is the surgery
coefficient. For this class of manifolds we will give a bound on the complexity of
a rational homology ball bounded by Y in terms of σK(ωm), the Levine–Tristram
signature of the knot K evaluated at a primitive root of unity of order m. The
transition from Casson–Gordon invariants to the Levine–Tristram signature is done
through work of Cimasoni–Florens [7, Theorem 6.7], which we now briefly recall.
Consider a 3-manifold Y obtained by surgery on a ν-component framed link L with
linking matrix Λ and a character ϕ : H1(Y ) → C∗ mapping the meridian of the
ith component of L to ωni

m , where ni is coprime to m. Set α = (ωn1
m , . . . , ωnν

m ) and
denote by σL(α) the coloured signature of L evaluated on α. Then, we have

(3) σ(Y, ϕ) = σL(α)−
∑
i<j

Λij − sign(Λ) +
2

m2

∑
i,j

(m− ni)njΛij .

Proposition 2.5. If S3
m2(K), with m > 1, bounds a rational homology ball W with

one 1-handle, then |1 − σK(e2aπi/m) − 2a(m − a)| ≤ 1 for every 1 ≤ a < m such
that (a,m) = 1.

Proof. Let us say Y = S3
m2(K) and fix a character ϕ : H1(Y ) → C∗ of order m.

Since H1(Y ) is cyclic, it follows from the long exact sequence of the pair (W,Y )
that kerϕ = ker(i∗ : H1(Y ) → H1(W )). Therefore, ϕ extends to a character
ψ : H1(W ) → C∗ (see the proof of Corollary 2.2).

Since W is built with a single 1-handle, π1(W ) = Cn is cyclic, and we can choose
ψ to be injective as follows. Call d = n/m the index of i∗(H1(Y )) in H1(W ), and
consider the map j : Cm2 → Cn, j : 1 	→ d. We can fix identifications H1(Y ) = Cm2
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and H1(W ) = Cn such that i∗ : H1(Y ) → H1(W ) is identified with j, and ϕ maps
1 ∈ Cm2 to e2πi/m. We can now choose the extension ψ that maps 1 to e2πi/n,
which is hence an isomorphism onto the group of nth roots of unity in C∗.

We will use (W,ψ) to compute the Casson–Gordon signature invariant of the
pair (Y, ϕ). In this case in (1) we have r = 1 and σ(W ) = 0, so σ(Y, ϕ) = σψ(W ).

We proceed now to estimate |σψ(W )|. Since ψ is injective and π1(W ) is abelian,

the cover associated to ψ is the universal cover of W , and hence Hψ
1 (W ;Q(ζn)) = 0.

The long exact sequence for the pair (W,Y ), twisted with ψ, gives:

0 = Hψ
1 (W ;Q(ζn)) −→ Hψ

1 (W,Y ;Q(ζn)) −→ Hψ
0 (Y ;Q(ζn)) = Hϕ

0 (Y ;Q(ζm))⊕d,

and the latter group vanishes since ϕ is a non-trivial character of Y . Therefore,

Hψ
1 (W,Y ;Q(ζn)) is trivial, which in turn implies, by Poincaré–Lefschetz duality,

that H3
ψ(W ;Q(ζn)) = 0, and hence bψ3 (W ;Q(ζn)) = 0. Finally, since ψ is non-

trivial, we have bψ0 (W ) = 0. Now, since W is a rational homology ball,

1 = χ(W ) = χψ(W ) = bψ0 (W )− bψ1 (W ) + bψ2 (W )− bψ3 (W ) = bψ2 (W ),

and we obtain that dimHψ
2 (W ;Q(ζm)) = 1. Hence the signature σψ(W ) of the

equivariant intersection form is bounded by 1 in absolute value, and thus |σ(Y, ϕ)| ≤
1.

To finish the proof, we rewrite the Casson–Gordon signature invariant of Y in
terms of the Levine–Tristram signature of the surgery knot K using (3). To this
end, identify Cm with the cyclic group generated by ωm = e2iπ/m ∈ C∗ by sending
1 ∈ Cm to e2iπ/m and denote by σK(·) the Levine–Tristram signature of the knot
K. Recall that for knots the coloured and the Levine–Tristram signatures coincide.
Let ωa

m be the image of the meridian of K under the character ϕ. Finally, notice
that the linking matrix of a framed knot is simply given by the framing. The
statement of the proposition then follows from equation (3), which in this simple
case reads

|σ(Y, ϕ)| =
∣∣σK(ωa

m)− 1 + 2
m2 (m− a)am2

∣∣ . �
Remark 2.6. In fact, the key property used in the proof is that π1(W ) is cyclic;
hence the statement holds under this assumption as well.

When a rational homology sphere Y bounds a rational homology ball W , one
can give a lower bound on the complexity of W by looking at H1(Y ).

Proposition 2.7. If Y bounds a rational homology ball W and H1(Y ) is generated
by no fewer than g generators, every handle decomposition of W contains at least

g/2� 1-handles.

Proof (sketch). Take a handle decomposition of W with a single 0-handle, n1 1-
handles, n2 2-handles, and n3 3-handles. Since W is a rational homology ball,
n2 = n1 + n3. Consider the 4-handlebody W ′ obtained by attaching only the 1-
and 2-handles of W : by construction, Y ′ := ∂W ′ = Y#n3(S

1 × S2), and therefore
H1(Y

′) = H1(Y ) ⊕ Zn3 . Now perform a dot-zero surgery along the core of each
1-handle. This presents Y ′ as an integer surgery along a (n1 + n2)-component
link, and correspondingly presents H1(Y

′) as a quotient of Zn1+n2 ; it follows that
n1 + n2 ≥ g + n3 and hence g ≤ n1 + n2 − n3 = 2n1. �

The statement of Proposition 2.5 can be extended to surgeries with rational
coefficients. As shown in Figure 1, a rational surgery on a knotK can be interpreted
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K . . .

a1 a2 an

Figure 1. The integral surgery picture for p/q-surgery along K,
where [a1, . . . , an]

− is the negative continued fraction expansion of
p/q.

as an integral surgery on a link L = K∪U2∪· · ·∪Un, where all the Ui’s are unknots.
We will use this link L to compute the Casson–Gordon signature invariants of
Y = S3

m2/q(K). Notice that any character ϕ : H1(Y ) → Cm can be determined

from a character defined on H1(S
3 \ L) sending the meridian of K to a ∈ Cm and

extending to H1(Y ). If in the link L we replace K with an unknot U1 and leave
the same surgery coefficients, we obtain a surgery description of the lens space
L(m2,−q) = S3

m2/q(U) and a character χa : H1(L(m
2,−q)) → Cm sending the

meridian of U1 to a. With all these conventions in place, we have the following
statement.

Proposition 2.8. If Y = S3
m2/q(K) bounds a rational homology ball W with one

1-handle, then |σK(e2iπa/m)+σ(L(m2,−q), χa)| ≤ 1 for every 1 ≤ a < m such that
(a,m) = 1.

Remark 2.9. There is an explicit formula for σ(L(m2,−q), χa) given by Gilmer
[10, Example 3.9].

Proof of Proposition 2.8. The same arguments used in Proposition 2.5 allow us to
conclude in this case that any surjective character ϕ : H1(Y ) → Cm has an injective

extension ψ to W , σ(Y, ϕ) = σψ(W ), and, since bψ2 (W ) = 1, we have |σ(Y, ϕ)| ≤ 1.
To finish the proof, we want to express σ(Y, ϕ) using formula (3) applied to the

surgery diagram depicted in Figure 1. We refer the reader to [7] for the pertinent
definitions. The formula given by Cimasoni and Florens has one term that depends
on the knot K and the colored signature of L. All the others, which we will denote
by Tϕ,Λ, depend exclusively on the image of the meridians of L via ϕ and on
the linking matrix Λ of the surgery presentation of Y . It follows that, with the
exception of the first term in the formula, all the others remain unchanged if we
substitute K with an unknot. That is, if we compute the Casson–Gordon invariant
of a lens space from the chain surgery presentation with coefficients (a1, . . . , an)
and for the character that is defined by sending the meridian of U1 to e2iπa/m.
This Casson–Gordon invariant is precisely σ(L(m2,−q), χa).

Now, notice that the link L bounds an evident C-complex in the sense of [7]
given by a Seifert surface for K and a series of embedded disks, one for each unknot.
The first homology of this complex coincides with the first homology of the Seifert
surface for K, and the multivariable coloured signature of L evaluated at any vector
of roots of unity (ω1, . . . , ωn) coincides with the Levine–Tristram signature of K
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evaluated at ω1. This yields

σ(Y, ϕ) = σL(ω1, . . . , ωn) + Tϕ,Λ = σK(ω1) + Tϕ,Λ.

Since there is an evident contractible C-complex for the chain surgery presentation
of L(m2,−q), it follows that σ(L(m2,−q), χa) = Tϕ,Λ and, by definition of ϕ, we

have ω1 = e2iπa/m. The result follows. �

3. Examples

Example 3.1. As promised in the introduction, we prove that the 3-manifold
Y = L(25, 21)#L(4, 3) bounds no rational homology ball constructed with a single
1-handle. However, it bounds a rational homology ball built with two 1-handles
and two 2-handles.

Indeed, as shown by Moser [16], S3
100(T4,25) = L(25, 21)#L(4, 3); we can now use

Proposition 2.5 to obstruct the existence of such a ball. In fact, using the formula
from [15], we see that σT4,25

(eiπ/5) = −15 (note that eiπ/5 is a root of the Alexander
polynomial of T4,25, thus explaining why the signature is odd), and therefore

|σ(Y, ϕ)| = |1− σT4,25
(eiπ/5)− 2(10− 1)| = |1 + 15− 18| = 2.

Since each of L(25, 21) and L(4, 3) bounds a rational homology ball built with a
single 1-handle and a single 2-handle [4], their connected sum does indeed bound
a rational homology ball, built with two 1-handles and two 2-handles, namely the
boundary connected sum of the two balls above.

Also, note that L(25, 7) is a lens space that bounds a rational homology ball
W and that L(25, 7)#L(25, 7) bounds a rational homology ball built with a single
1-handle and a single 2-handle, which is therefore simpler than the boundary con-
nected sum of two copies of W . This shows that the example above is non-trivial.

In the following examples we will be using the Fibonacci numbers, defined by⎧⎨
⎩

F0 = 0,
F1 = 1,
Fn+1 = Fn + Fn−1.

Example 3.2. In fact, the previous example readily generalises to the following
family: whenever Ya,b = L(a2,−b2)#L(b2,−a2) = S3

(ab)2(Ta2,b2) and �b/a� ≤ 2

bounds a rational homology ball, we will show that for the character ϕ on Ya,b that
maps the meridian to exp(2πi/ab), |σ(Ya,b, ϕ)| ≥ 2, thus showing that Ya,b does not
bound a rational homology ball with one 1-handle.

Note that if ab is odd, Ya,b is the branched double cover of a ribbon knot by
work of Lisca [14], and for every character ϕ′ of order a prime power, |σ(Ya,b, ϕ

′)| ≤
1 [6, Theorem 2].

We now prove the claim above that |σ(Ya,b, ϕ)| ≥ 2. From equation (3) we know
that

|σ(Ya,b, ϕ)| = |σTa2,b2
(e2πi/ab)− 1+

2

a2b2
(ab− 1)a2b2| = |σTa2,b2

(e2πi/ab)+ 2ab− 3|,

and therefore it suffices to show that σTa2,b2
(e2πi/ab) ≥ −2ab+5. Observe that the

Alexander polynomial of Ta2,b2 has simple roots, and they are the a2b2th roots of
unity that are neither a2th nor b2th roots of 1. By these two observations, we know
that σTa2,b2

can only jump by 2 at each such root of unity and that the value at

these roots of unity is the average of the neighbouring values (and in particular it
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is odd); since the signature vanishes at 1, at e2πi/ab it is bounded by the number of
roots in the arc e2πit with t in the open interval (0, 1/ab). These are easily counted
to be ab− 1− �b/a� ≥ ab− 3. Since e2πi/ab is a root of the Alexander polynomial,

|σTa2,b2
(e2πi/ab)| ≤ 2(ab− 3) + 1.

Note that, a posteriori, since Ya,b bounds a rational homology ball built with two
1-handles,

|σ(Ya,b, ϕ)| ≤ 3,

which also implies that σTa2,b2
(e2πi/ab)≤6−2ab, thus proving that σTa2,b2

(e2πi/ab)=

5− 2ab and that σTa2,b2
(e2πit) is nonincreasing for t in the closed interval [0, 1/ab].

As a concrete example, we can choose a = F5 = 5, b = F7 = 13; in this case,
Ya,b bounds a rational homology ball, obtained as the complement of a rational

cuspidal curve in CP2 (see [9,13]). In fact, there is a rational curve C in CP2 whose
unique singularity has link T (25, 169) [9, Theorem 1.1(c)]; the boundary of an open
regular neighbourhood N of C is Y5,13, and the complement of N in CP2 is a ra-
tional homology ball (see [5]). Additionally, K5,13 = K(25,−169)#K(169,−25) =
K(25, 6)#K(169, 144), and each of the two summands is ribbon with fusion number
1. However, K5,13 has fusion number 2: indeed, by Corollary 2.3 its fusion number
is at least 2, and since it is the connected sum of two fusion number-1 knots, the
inequality is sharp. These examples show, once again, that the assumption that
the order of ϕ is a prime power in [6, Theorem 2] is indeed essential.

Indeed, infinitely many pairs of odd integers arise in this fashion: for each pair
(a, b) = (F6k−1, F6k+1) the 3-manifold Ya,b bounds a rational homology ball [9, 13]
and H1(Ya,b) has odd order, since both F6k−1 and F6k+1 are odd. From now
on we restrict to (a, b) belonging to this family, which has �b/a� = 2. If (a, b) =
(F6k+1, F6k+3) or (a, b) = (F6k+3, F6k+5), then Ya,b still bounds a rational homology
ball, but in this case |H1(Ya,b)| = a2b2 is even, since F6k+3 is divisible by F3 = 2.

Note that, when ab is odd, Ya,b is the branched double cover of a knot Ka,b

which is a connected sum of two ribbon 2-bridge knots, and therefore, since the
fusion number of a ribbon 2-bridge knot is 1 [4], the fusion number of Ka,b is 2. In
order to see this, we use the (elementary) identity a2 − 3ab + b2 = −1; from this
it follows that −a2 ≡ 1 (mod b) and that the quotient (−a2 − 1)/b = −3a + b is
coprime with b; symmetrically, (−b2 − 1)/a is an integer coprime with a. That is,
both 2-bridge knots K(a2,−b2) and K(b2,−a2) are of the form K(m2, km+ 1) for
some k coprime with m, and hence they are ribbon [14]. Moreover, as observed by
Baker, Buck, and the third author [4], they both bound a ribbon disc built with
a single 1-handle, hence their fusion number is 1. By taking the branched double
cover of the boundary connected sum of these ribbon discs, one exhibits a rational
homology ball bounding Ya,b built with two 1-handles and two 2-handles, and this
is minimal, by Proposition 2.5.

Example 3.3. One can refine the example above to produce an irreducible surgery
that bounds no rational homology ball with one 1-handle, but does bound one with
three. In fact, Y = S3

400(T4,25;2,201) bounds a rational homology ball [3], and a quick
computation with the Levine–Tristram signature using [15] and Proposition 2.5
yields

|σ(Y, ϕ)| = |1−σT4,25;2,201
(eiπ/10)−2·(20−1)| = |σT2,201

(eiπ/10)−37| = |35−37| = 2,

where ϕ is the character that sends the meridian to e2iπ/20.
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Irreducibility is proven by looking at the canonical plumbing diagram for Y ;
since it is connected, Y is irreducible (see [8, 17] for details).

We can also find examples when H1(Y ) has odd order. Indeed, one can look
at Y = S3

9·25·169(T25,169;3,3·25·169+1) and the character ϕ that sends a meridian

to e2πi/(3·5·13); a similar computation to the one above with the Levine–Tristram
signatures yields

|σ(Y, ϕ)| =
∣∣∣1− σT25,169;3,12676

(e2πi/195)− 388
∣∣∣ = 2,

hence proving that Y does not bound a rational homology ball with a single 1-
handle.

We conclude with a rather lengthy example where we produce a family of ir-
reducible 3-manifolds with cyclic first homology group. Each of these manifolds
bounds a rational homology ball built with handles of index at most 2, but such
that the number of handles needed is arbitrarily large.

The structure of the argument is the following: we fix an integer v, and we build
a 3-manifold Y by a construction that is akin to the plumbing of spheres. The
manifold Y will depend on the choice of v knots K1, . . . ,Kv ⊂ S3 and v+1 integers
a, n1, . . . , nv, and we show that, under certain assumptions, all these manifolds have
cyclicH1. We then specialise to a certain family of knotsKj and integers nj , coming
from the example above, and we prove that the resulting Y does indeed bound a
rational homology ball built out of 2v + 1 1-handles and 2v + 1 2-handles. We
then compute the signature defect associated to a certain character ϕ of Y within
an error of 2, and using Corollary 2.2 we show that any rational homology ball
2-handlebody needs at least 2v − 1 1-handles. Finally, we argue the irreducibility
of Y .

Example 3.4. Let us consider the following (modified) plumbing diagram, repre-
senting a 3-manifold Y :

• • . . . • •

•

•• •

[K1, n
2
1] [K2, n

2
2] [Kv−1, n

2
v−1] [Kv, n

2
v]

a

−2−2 −1

����������������������

������������ ��
��

��
��

��
��

���
���

���
���

���
���

���
�

Here each label [K,n] at the bottom signifies that, in the corresponding surgery
picture for Y , instead of an unknot we use the knot K, with framing n. In other
words, instead of plumbing sphere bundles, we plumb the trace of n-surgery along
K using the co-core of the 2-handle.

Whenever S3
n2
j
(Kj) bounds a rational homology ball for each j = 1, . . . , v, so

does Y ([1]; see also [2]). We claim that if each nj is odd, nj and nk are pairwise
coprime for each j �= k, and a �≡ v (mod 2), then H1(Y ) is cyclic. From now on,
we will make these assumptions on nj and a, and we shall specialise both Kj and
nj later.
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After two subsequents blowdowns we obtain the following diagram:

• • . . . • •

•

•

[K1, n
2
1] [K2, n

2
2] [Kv−1, n

2
v−1] [Kv, n

2
v]

a+ 2

0

����������������������

������������ ��
��

��
��

��
��

���
���

���
���

���
���

���
�

Note that the double edge between the two topmost vertices is not to be intended
in the plumbing diagram sense, but rather signifies a double linking between the
corresponding attaching circles; in particular, it does not increase b1. Let P be the
4-manifold associated to the diagram above, with ∂P = Y .

Notice that P is a 2-handlebody, i.e., it is obtained from B4 by attaching only
2-handles, and hence H1(P ;R) = 0 and H2(P ;R) = H2(P )⊗R, and H2(P, Y ;R) =
H2(P, Y )⊗R for each ring R, and that the latter are both free over R of rank v+2.

We now set out to compute H1(Y ) as the quotient of Zv+2 by the image of the
intersection matrix of the link coming from the diagram above. The matrix is

Q =

⎛
⎜⎜⎜⎜⎜⎝

a+ 2 2 1 · · · 1
2 0 0 · · · 0
1 0 n2

1
...

...
. . .

1 0 n2
v

⎞
⎟⎟⎟⎟⎟⎠ .

By expanding along the second row, we easily see that |detQ| = (
∏v

j=0 nj)
2,

where we let n0 = 2 for convenience.
In order to see that H1(Y ) is cyclic, since |detQ| =

∏v
j=0 |Z/n2

jZ|, it is enough

to check that, for each j, H1(Y ;Z/n2
jZ)

∼= Z/n2
jZ. Let R = Z/n2

jZ.
The long exact sequence for the pair (P, Y ) yields

H2(P ;R)

∼=
��

�� H2(P, Y ;R) ��

∼=
��

H1(Y ;R) ��

∼=
��

0

Rv+2 QR �� Rv+2 �� cokerQR
�� 0

where QR is the reduction of Q modulo n2
j . It is enough to show that the quotient

is cyclic. This is elementary from the matrix Q, since nk is now invertible in R
for every k �= j. When j = 0, it is helpful (but not necessary) to use the fact
that n2

k ≡ 1 (mod 4) for each k > 0; one then reduces to the case of the matrix(
a+2−v 2

2 0

)
, which is well known to have cyclic cokernel precisely when a+ 2− v is

odd.
Observe that, after doing a dot-zero surgery on the 0-framed unknot, the diagram

above also exhibits a rational homology cobordism W from Y ′ := #v
j=1S

3
n2
j
(Kj)

to Y . Moreover, it is easy to check that the inclusion induces an injection i′∗ :
H1(Y

′) → H1(W ); hence every character ϕ′ of Y ′ extends to W , and we can
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further restrict it to Y . Let i∗ : H1(Y ) → H1(W ) be the map induced by the
inclusion. Additionally, since coker i′∗ = coker i∗ = Z/2Z and since |H1(Y

′)| is odd,
the order of the induced character on Y is either the order of ϕ′ or twice as large.

We are going to look at a character ϕ : H1(Y ) → C∗ induced as above from the
character ϕ′ on Y ′ that sends the meridian of Kj to exp(2πi/n2

j) for each j.
By additivity of the Casson–Gordon signature defects [11],

|σ(Y ′, ϕ′)| =

∣∣∣∣∣∣
n∑

j=1

σ
(
S3
n2
j
(Kj), ϕj

)∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

(
1− σKj

(
e2πi/nj

)
+ 2(nj − 1)

)∣∣∣∣∣∣ .
As in Example 3.2, we turn our attention to torus knots and Fibonacci numbers,
and from now on we assume that Kj = TF 2

pj
,F 2

pj+2
, nj = Fpj

Fpj+2, where the

sequence pj is defined recursively by p1 = 5, pj+1 = 6
∏

k≤j(p
2
k + 2pk)− 1.

Since gcd(Fa, Fb) = Fgcd(a,b) and since F3 = 2, we have that nj is odd for each
j. Moreover, by construction,

pj ≡ 1 (mod 2), pj ≡ −1 (mod pk), pj ≡ −1 (mod pk + 2),

and hence both pj and pj +2 are odd and coprime with pk for each k; thus, nj and
nk are coprime, too.

It follows from work of Kashiwara [13] (see also [5, 9]) that S3
n2
j
(Kj), which we

denoted by YFpj
,Fpj+2

in Example 3.2, bounds a rational homology ball. Moreover,

Example 3.2 shows that we can choose these balls to be constructed using only 1-
and 2-handles. Since W is a rational homology cobordism constructed with one
1-handle and one 2-handle, Y also bounds a rational homology ball constructed
without 3-handles. In fact, the rational homology balls constructed in Example 3.2
used two 1-handles, andW uses only one 1-handle, so Y bounds a rational homology
ball constructed with 2v + 1 1-handles and 2v + 1 2-handles.

In Example 3.2 we estimated the Casson–Gordon signature and obtained∣∣∣σ(YFpj
,Fpj+2

, ϕj)
∣∣∣ ≥ 2,

which combined with the additivity under connected sum yields |σ(Y ′, ϕ′)| ≥ 2v.
Since ϕ′ extends to the cobordism W , we can glue W to any 4-manifold Z ′ to

which ϕ′ extends (rationally), and use the resulting 4-manifold Z = W ∪ Z ′ to
compute the signature defect σ(Y, ϕ).

Since W is a rational homology cobordism, the ordinary signature does not
change; that is, σ(Z) = σ(Z ′). The twisted signature σψ(Z) is also controlled by

σψ′
(Z ′): indeed, since W contains a single 2-handle, |σψ(Z) − σψ′

(Z ′)| ≤ 1 by
Novikov additivity.

It follows that |σ(Y, ϕ)| ≥ |σ(Y ′, ϕ′) − 1| ≥ 2v − 1, and therefore any rational
homology ball filling Y , that is built only using 1- and 2-handles, has at least 2v−1
1-handles, by Corollary 2.2.

To conclude, we argue that Y is irreducible. Indeed, we can replace each of
the nodes labelled with [Kj , n

2
j ] above with a negative definite plumbing tree, and,

using Neumann’s criterion [17], one can check that the plumbing is in normal form
and its boundary is irreducible.
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