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ON A MINKOWSKI-LIKE INEQUALITY

FOR ASYMPTOTICALLY FLAT STATIC MANIFOLDS
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(Communicated by Guofang Wei)

Abstract. The Minkowski inequality is a classical inequality in differential
geometry giving a bound from below on the total mean curvature of a convex
surface in Euclidean space, in terms of its area. Recently there has been
interest in proving versions of this inequality for manifolds other than R

n;
for example, such an inequality holds for surfaces in spatial Schwarzschild
and AdS-Schwarzschild manifolds. In this note, we adapt a recent analysis of

Y. Wei to prove a Minkowski-like inequality for general static asymptotically
flat manifolds.

1. Introduction

The Minkowski inequality is a celebrated result in classical differential geometry,
bounding the total mean curvature of a closed convex hypersurface Σ in R

n from
below in terms of its area [18]. Precisely, we have

(1.1)
1

(n− 1)ωn−1

∫
Σ

H dσ ≥
(

|Σ|
ωn−1

)n−2
n−1

,

where |Σ| is the area of Σ and ωn−1 is the area of the unit (n−1)-sphere. Moreover,
equality holds if and only if Σ is a round sphere. The hypotheses of (1.1) have since
been improved to include mean convex star-shaped [9,10] and outer-minimizing [12]
surfaces.

Recall that a closed surface Σ is said to be outer-minimizing if it minimizes area
among all surfaces enclosing Σ. Note that the inequality (1.1) has been transposed
from how it is perhaps more commonly expressed for a more direct comparison to
(1.6) below.

In recent years, there has been interest in generalizations of the Minkowski in-
equality to surfaces embedded in manifolds other than Euclidean space. For ex-
ample, Minkowski inequalities are known for surfaces in hyperbolic space [5, 8],
Schwarzschild manifolds [5,19], and Schwarzschild-AdS manifolds [5]. In this note,
we prove a Minkowski inequality for general static asymptotically flat manifolds,
generalizing the classical inequality and the known inequality for Schwarzschild
manifolds. As with several other proofs of Minkowski inequalities, our proof relies
on monotonicity of a quantity under inverse mean curvature flow. The key con-
tribution here is the observation that using the weak formulation of inverse mean
curvature flow allows one to prove the inequality on a general static manifold, rather
than working only within a fixed manifold where the smooth flow is known to be
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well-behaved. The proof adapts an analysis of Wei [19] that is used to prove a
Minkowski inequality for outer-minimizing surfaces in the Schwarzschild manifold.

First, we recall some definitions.

Definition 1.1. A Riemannian manifold (M, g) is said to be asymptotically flat
(with one end) if M minus a compact set is diffeomorphic to R

n minus a closed ball,
the scalar curvature is integrable, i.e., R(g) ∈ L1(M), and near infinity g satisfies

(1.2) g = δ +O(|x|−τ ), ∂g = O(|x|−τ−1), ∂2g = O(|x|−τ−2),

where δ is the flat metric and τ ∈ (1/2, 1].

It is well-known that this decay is sufficient to ensure that the ADM mass is
well-defined.

Definition 1.2 ([1]). Let (M, g) be an asymptotically flat manifold of dimension
n and one end. The ADM mass of (M, g) is then given by

(1.3) m =
1

2(n− 1)ωn−1
lim
r→∞

∫
Sr

∂igij − ∂jgii dS
j ,

where the limit is taken over spheres Sr of radius r in the asymptotic end, the
coordinates near infinity are those coming from the usual Cartesian coordinates in
Euclidean space, and repeated indices are summed over.

Note that we use large spheres for the sake of convenience, but it is now well-
known that the definition is independent of the limiting surfaces used. Furthermore,
Cartesian coordinates are used to simplify the expression; however, the ADM mass
is indeed a geometric quantity, independent of coordinates [4, 6].

Definition 1.3. Let (M, g) be an n-dimensional Riemannian manifold. A function
f on M is called a static potential if it solves

(1.4) Δg(f)g −∇2
gf + fRicg = 0.

If (M, g) admits a positive solution to (1.4), then we say it is a static manifold.

Note that if (M, g) is asymptotically flat, then a well-known result of Corvino
[7] implies that g is scalar-flat, R = 0. This, in turn, implies that a static potential
satisfies Δgf = 0.

Throughout, we will always work with bounded static potentials, which at least in
dimension 3 is implied by the assumption of positivity (see, for example, Proposition
3.1 of [16]).

The terminology ‘static’ comes from general relativity, and indeed so does the
motivation for studying such manifolds. A manifold (M, g) is static, with static
potential f , if and only if the Lorentzian warped product metric

(1.5) h = −f2dt2 + g

satisfies the vacuum Einstein equations. The metric (1.5) is then a static spacetime
in the sense of general relativity.

The main result of this note is the following inequality.

Theorem 1.4. Let (M, g) be an asymptotically flat manifold of dimension 3 ≤ n ≤
7 with bounded positive static potential f . Assume ∂M is not empty, and let Σ be a
connected component of the boundary that is outer-minimizing with (inward) mean
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curvature H. Assume further that any remaining components of the boundary are
closed minimal surfaces.

Then, after rescaling so that f is asymptotic to 1, we have

(1.6)
1

(n− 1)ωn−1

∫
Σ

fHdS ≥
(

|Σ|
ωn−1

)n−2
n−1

− 2m.

Furthermore, we have equality if and only if M has no boundary other than Σ and
the foliation of M given by IMCF starting at Σ is totally umbilic.

Remark 1.5. As the manifolds we consider here have an interior boundary, the
positive mass theorem does not apply. However, we do not require an assumption
on the sign of m. For example, Theorem 1.4 holds when (M, g) is taken to be an
exterior region in a Schwarzschild manifold with negative mass.

Remark 1.6. In three dimensions, Huisken and Ilmanen’s proof of the Riemannian
Penrose inequality [13] shows that the Hawking mass of an outer-minimizing surface
bounds the ADM mass from below. This inequality can be expressed at

(1.7)
1

16π

(
|Σ|
4π

)1/2 ∫
Σ

H2 dS ≥
(
|Σ|
4π

)1/2

− 2m.

In higher dimensions, a recent result of Miao and the author [14] gives a related
inequality. It would be interesting to compare these inequalities to (1.6).

2. Properties of static potentials

In the statement of Theorem 1.4, we consider only static potentials that are
positive and bounded. In this section we recall some basic properties of static
potentials and, in particular, illustrate that this condition is natural and indeed
such static manifolds are of particular interest to consider. Readers who are familiar
with static metrics and Bartnik’s quasi-local mass can skip this section.

Most of the literature pertaining to static manifolds considers the case n = 3,
motivated by general relativity. In particular, the study of static manifolds is very
closely related to Bartnik’s quasi-local mass. A common formulation of the Bartnik
mass is the following, where usually one assumes n = 3:

Definition 2.1. Let the triple (Σ, g,H) be a Riemannian metric g on a closed
(n−1)-manifold Σ, and let H be a positive function on Σ. Let PM(Σ, g,H) be the
set of asymptotically flat manifolds with non-negative scalar curvature, boundary
isometric to (Σ, g) with (inward) mean curvature H, containing no closed minimal
surfaces.

The Bartnik mass is then given by

(2.1) mB(Σ, g,H) := inf
(M,h)∈PM(Σ,g,H)

{mADM (M,h)}.

While this mass seems effectively impossible to directly compute, Bartnik made
the following conjecture1 regarding static metric extensions:

Conjecture 2.1. Given (Σ, g,H) as above, there is a unique static manifold in
PM(Σ, g,H), and this manifold realizes the infimum in (2.1).

1In dimension n = 3.



4042 STEPHEN MCCORMICK

Remark 2.2. There are many subtly different formulations of Bartnik’s quasi-local
mass and the static metric extensions conjecture. For the sake of presentation, we
avoid these technicalities here. In some cases, the conjecture has been resolved in
the positive. For example, in the case of (Σ, g,H) close to the data induced on a
round sphere in R

3, the existence of a static extension was proven by Miao [15].
Recent work by Anderson [3] proves, given data (Σ, g,H > 0), for sufficiently small
λ > 0, a static extension of (Σ, g, λH) can be found.

It is worth reiterating that while various static uniqueness theorems have been
established, in the case of a manifold with mean convex boundary there exists
a large class of examples of static manifolds, which are of particular interest in
relation to Bartnik’s quasi-local mass.

The following property of static potentials is a very recent result of Huang,
Martin, and Miao [11], reformulated slightly such that it is directly applicable for
us here.

Theorem 2.3 (Theorem 1 of [11]). Let Σ be a closed minimal surface in an asyp-
totically flat manifold (M, g) of dimension 3 ≤ n ≤ 7, admitting a static potential
f . Suppose there are no other closed minimal surfaces containing Σ. Then f ≡ 0
on Σ.2

The above theorem is used in the proof of our main inequality in order to allow
for manifolds with boundary components outside the one we flow from, provided
they are minimal surfaces. We also make use of the asymptotics of an arbitrary
static extension (see, for example, [2, 16]). Specifically, if f is a bounded positive
static potential, then it can be rescaled by a constant, so that at infinity f has the
expansion

(2.2) f = 1− m

|x|n−2
+ o(|x|2−n),

where m is the ADM mass of (M, g).
Throughout, we will assume a bounded static potential has always been rescaled

appropriately so it has the form given by (2.2).
Given such a static potential, we can obtain the ADM mass from this asymptotic

expansion via

(2.3) lim
r→∞

∫
Sr

∇f · νdμt = lim
r→∞

∫
Sr

(n− 2)m

rn−1
dS = (n− 2)ωn−1m.

We end this section by quoting the following proposition, which is a result of
Miao–Tam [16], showing that the assumptions we impose on the static potential
are satisfied for any static asymptotically Schwarzschildean 3-manifold.

Proposition 2.1. Let (M, g) be an asymptotically Schwarzschildean 3-manifold
with non-zero mass and static potential f . Then outside a compact set, f is bounded
and does not change sign; i.e., we can choose f > 0.

2With the addition of a minor caveat, this result is in fact valid for all dimensions greater than
2. However, as we are only concerned with 3 ≤ n ≤ 7 here, we omit this caveat for the sake of
clarity.
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3. Proof of the main theorem

The proof of Theorem 1.4 follows the main proof of [19] very closely, replacing
the Schwarzschild potential with a general static potential. The inequality follows
from the monotonicity of a quantity Q(t) (defined below) under weak inverse mean
curvature flow (IMCF). The classical (smooth) IMCF is a family of hypersurfaces
Σt given by x : Σ×[0, T ) → M that evolve with speed proportional to the reciprocal
of the mean curvature:

(3.1)
∂x

∂t
=

1

H
ν,

where ν is the unit normal pointing towards infinity. In general, the flow does not
remain smooth for all time, and one must work with a weak formulation of IMCF,
which appropriately jumps past times where the flow fails to be smooth. As we do
not require the technical aspects of weak IMCF in this note, we omit the details
and refer the reader to [13] for an excellent exposition.

For a weak solution to IMCF, Σt, and a given bounded, positive static potential
f , we define on each Σt the quantity

(3.2) Q(t) := |Σt|−
n−2
n−1

(
2(n− 1)ωn−1m+

∫
Σt

fH dμt

)
.

We show that this is monotone along the weak IMCF. This monotonicity has been
used previously (e.g. [5, 19]) to prove Minkowski inequalities in Schwarzschild and
Schwarzschild-AdS manifolds.

We consider the flow in a manifold M with possibly disconnected boundary,
commencing the flow from a chosen boundary component, Σ. The idea is that
commencing the flow from Σ, the weak flow ‘jumps’ over the other components
of the boundary and continues to flow afterwards. Similarly to the proof of the
Riemannian Penrose inequality using IMCF, we must assume the other boundary
components are minimal surfaces in order to preserve the monotonicity across the
jump. The analysis here closely follows that of Wei [19] in the Schwarzschild case.
We first consider the monotonicity of Q(t) where the flow is smooth. The proof is
essentially that of Brendle–Hung–Wang [5] where the monotonicity is used to prove
a Minkowski inequality in the AdS-Schwarzschild manifold; we include the details
here as it is useful to illustrate the minor differences between the Schwarzschild
case and a general static manifold.

Proposition 3.1. Let Σt be a smooth solution to IMCF for 0 < t1 < t2 < T on
an asymptotically flat manifold M with static potential f , satisfying the hypotheses
of Theorem 1.4. Then

(3.3) Q(t2) ≤ Q(t1)

with equality if and only if for each t ∈ [t1, t2], Σt is totally umbilic and M has no
boundary components outside Σt1 .

Proof. The evolution equations for the mean curvature and the volume form of Σt

under IMCF are well-known (see, for example, [13]), to be given by

(3.4)
∂

∂t
H = −ΔΣt

1

H
− 1

H

(
|A|2 + Ric(ν, ν)

)
and

(3.5)
∂

∂t
dμt = dμt.
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It is therefore straightforward to compute

∂

∂t

∫
Σ

fHdμt =

∫
Σ

(
∂f

∂t
H + f

∂H

∂t
+ fH

)
dμt

=

∫
Σ

(
1

H
ν · ∇(f)H − fΔΣt

1

H
− f

H

(
|A|2 +Ric(ν, ν)

)
+ fH

)
dμt

≤
∫
Σ

(
∇f · ν − 1

H
(ΔΣt

f + fRic(ν, ν)) +
n− 2

n− 1
fH

)
dμt,

where we have used the inequality (n− 1)|A|2 ≥ H2.
It follows that we have

(3.6)
∂

∂t

∫
Σ

fHdμt ≤
∫
Σ

(
∇f · ν − 1

H
(ΔΣt

f + fRic(ν, ν)) +
n− 2

n− 1
fH

)
dμt.

From the condition that f is a static potential (1.4) and the identity

ΔΣt
f = Δf −∇2f(ν, ν)−Hν · ∇f,

we obtain

(3.7) ΔΣt
f + fRic(ν, ν) = −Hν · ∇f.

Then substituting (3.7) into the evolution equation(3.6) gives

(3.8)
∂

∂t

∫
Σ

fHdμt ≤
∫
Σ

(
n− 2

n− 1
fH + 2∇f · ν

)
dμt,

with equality if and only if (n− 1)|A|2 = H2; that is, Σt is umbilic. Now, making
use of the fact that f is harmonic, the divergence theorem allows us to write the
integral

∫
Σ
∇f · νdμt as a surface integral at infinity and a surface integral on (the

possibly empty or disconnected) remaining boundary ∂̂M := ∂M \ Σ.
By (2.3), we then have

∂

∂t

(
2(n− 1)mωn−1 +

∫
Σ

fHdμt

)

≤ n− 2

n− 1

(∫
Σ

fHdμt + 2(n− 1)mωn−1

)
− 2

∫
̂∂M

∇f · ν dμ(3.9)

≤ n− 2

n− 1

(∫
Σ

fHdμt + 2(n− 1)mωn−1

)
,

where the last inequality follows by the Hopf lemma and Theorem 2.3 and is in fact

strict unless ∂̂M is empty. This then implies that Q(t) is strictly monotonically

decreasing, unless each Σt is umbilic and ∂̂M is empty, in which case Q(t) remains
constant. �

We now turn to discuss the weak flow. A solution of weak IMCF is gener-
ally defined by the level sets of a function u ≥ 0 on M . For each t > 0, Σt :=
∂{u < t} defines an expanding family of C1,α hypersurfaces that minimize area
among homologous hypersurfaces in the region {u ≥ t}. As we do not require tech-
nical details of the flow in this short note, we omit further discussion and refer the
interested reader to [13].

It is straightforward to verify that the analysis in Section 4 of [19] depends only
on the fact that M admits a positive, bounded static potential f . In particular, if
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there are no boundary components in the region between Σt1 and Σt2 , we have (cf.
equation (4.12) of [19])

(3.10)

∫
Σt2

fHdμt2 −
∫
Σt1

fHdμt1 ≤
∫ t2

t1

∫
Σs

(
2∇f · ν +

n− 2

n− 1
fH

)
dμsds.

Now, each Σs can be approximated in C1,α, so the first integral on the right hand
side can be estimated by ∫

Σs

∇f · ν ≤ (n− 2)ωn−1m

with equality if and only if M has no boundary components outside Σs. Hence
(3.11)∫

Σt2

fHdμt2 −
∫
Σt1

fHdμt1 ≤ n− 2

n− 1

∫ t2

t1

(∫
Σs

(fH) dμs + 2(n− 1)ωn−1m

)
ds.

As Σ is outer-minimizing, under IMCF we have that |Σt| = et|Σ|, and it therefore
follows from Gronwall’s Lemma – as in Section 4 of [19] – that Q(t) is strictly mono-

tonically decreasing, unless each Σt is umbilic and ∂̂M has no boundary components
outside Σt. In the case where the flow gets close to another boundary component
of M , the fact that the other boundary components are minimal surfaces ensures
that the analysis is unchanged at the jump. That is, when the flow jumps across
another boundary component it behaves identically as to when it jumps across the
horizon in the Schwarzschild case, and therefore Q(t) remains monotone. That is,
we have monotonicity of Q(t) along the weak flow (cf. Proposition 4.5 of [19]).

It remains to be shown that Q(t) has the correct limiting behaviour as the flow
runs out to infinity. However, this too follows from the analysis in [19]. One easily
checks that the proof of Proposition 5.1 in [19] is valid for a general static manifold
(cf. equation (5.6) therein) yielding

(3.12) lim
t→∞

Q(t) = (n− 1)ω
1

n−1

n−1 .

Proof of Theorem 1.4. Since the weak IMCF runs from the outer-minimizing sur-
face Σ out to infinity, the main theorem is then an immediate consequence of the
monotonicity combined with the limiting behaviour of Q(t). That is, we have

(3.13) |Σ|−
n−2
n−1

(
2(n− 1)ωn−1m+

∫
Σ

fHdS

)
≥ (n− 1)ω

1
n−1

n−1 ,

which can then be expressed as

(3.14)
1

(n− 1)ωn−1

∫
Σ

fHdS ≥
(

|Σ|
ωn−1

)n−2
n−1

− 2m.

�
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