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MOST BOSON QUANTUM STATES

ARE ALMOST MAXIMALLY ENTANGLED

SHMUEL FRIEDLAND AND TODD KEMP

(Communicated by Adrian Ioana)

Abstract. The geometric measure of entanglement E of an m qubit quantum
state has maximum value bounded above by m. In previous work of Gross,
Flammia, and Eisert, it was shown that E ≥ m − O(logm) with high prob-
ability as m → ∞. They showed, as a consequence, that the vast majority
of states are too entangled to be computationally useful. In this paper, we
show that for m qubit Boson quantum states, the maximal possible geomet-
ric measure of entanglement is bounded above by log2m, opening the door to

many computationally universal states. We further show the corresponding
concentration result that E ≥ log2m − O(log logm) with high probability as
m → ∞. We extend these results also to m-mode n-bit Boson quantum states.

1. Introduction

Quantum algorithms, in their ability to perform computations exponentially
faster than what is strongly believed to be the maximum possible speed of many
classical algorithms, heavily depend on quantum entanglement. For example, in
[11], the authors implemented a compiled version of Shor’s quantum factoring al-
gorithm in a photonic system, and observed high levels of entanglement. It would
be tempting to conclude that “the more entanglement, the better” when it comes
to quantum computation. In [8], Gross, Flammia, and Eisert showed that this
intuition is incorrect. The geometric measure of entanglement E is a monotone
function on quantum states which takes values between 0 (for product states) and
m in a system with m qubits. (See Section 2.4 below for details.) Gross et al.
proved that if Ψ is an m qubit state with E(Ψ) > m− δ, and if an NP problem can
be solved by a computer with the power to perform local measurements on Ψ, then
there is a purely classical algorithm that can solve the same problem in a time only
approximately 2δ times longer. Hence, any such states with δ = O(logm) cannot
be “computationally universal”. They then go on to show, remarkably, that the
vast majority of quantum states have entanglement E(Ψ) > m−O(logm): letting
P denote the Haar probability measure on the sphere of all m qubit quantum states,

(1.1) P

(
E(Ψ) ≥ m− 2 log2(m)− 3

)
≥ 1− e−m2

for m ≥ 11.

Hence, for large m, the proportion of states which may actually be used to gain
more than a polynomial factor in performance is vanishingly small.
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This situation may therefore seem dire; to ameliorate this, we propose restricting
attention to a subset of quantum states that are, in some ways, more natural to
consider. We study Boson quantum states (see Sections 2.1 and 2.5): the kind
accessible to a quantum computer with access only to localized photonic states,
for example. Bosons, or symmetric quantum states, form a small subspace of all
states: the space of all m-mode tensors over C2 has dimension 2m, while the space
of symmetric m-mode tensors over C2 has dimension m+1, exponentially smaller.
This has significant consequences. For example, in a recent paper by the first
author and L. Wang, it is shown that the geometric measure of entanglement of m
qubit Bosons is polynomially computable in m; cf. [7]. Presently, we show that the
maximum possible geometric measure of entanglement of a Boson quantum state
is much smaller than in the full space.

Theorem 1.1. Let n,m ≥ 1. Denote dn,m =
(
m+n−1

m

)
. If Ψ is an m Boson

quantum state on Cn, then the geometric measure of entanglement of Ψ satisfies

0 ≤ E(Ψ) ≤ log2 dn,m.

In particular, if Ψ is an m qubit Boson state, then E(Ψ) ≤ log2(m+ 1).

In particular, Gross, Flammia, and Eisert’s argument about the usefulness of
entangled states does not produce a pessimistic result here: since the smallest δ > 0
for which E(Ψ) > m− δ is δ = O(m) for Boson states Ψ, the classical algorithm in
[8] is exponentially slower than the quantum algorithm, as expected.

The main theorem of this paper addresses the proportion of Boson quantum
states are that close to maximally entangled (even though this does not bear on
their usefulness for computation). We address the general question of Bosons over
any finite-dimensional state space of dimension ≥ 2.

Theorem 1.2. Let n ≥ 2 and m ≥ 1. Denote dn,m =
(
m+n−1

m

)
. For fixed n,

(1.2) P

(
E(Ψ) ≥ log2 dn,m − log2 log2 dn,m − 3 log2 n− 1

)
≥ 1− (dn,m)−n3

for m sufficiently large. In particular, in the case n = 2 where Ψ is an m qubit
Boson state, we have

(1.3) P

(
E(Ψ) ≥ log2 m− log2 log2 m− 3

)
≥ 1− 1

2m5/2
for m > 42.

Remark 1.3. (1) The general condition on the size of m to yield (1.2) is tedious
to state. Regardless, one finds that for all m, the probability is bounded

below by 1−C(n)(dn,m)−n3

for some constant C(n) that does not depend
on m.

(2) The exponents n3 and 5/2 in (1.2) and (1.3) are not sharp. In fact, the
actual rate of decay is super-polynomial: the analysis in Section 1.2 shows
that, for any exponent b > 0, there is a constant a > 0 so that, for all m
sufficiently large,

P

(
E(Ψ) ≥ log2 dn,m − log2 log2 dn,m − a

)
≥ 1− (dn,m)−b.

Note also that dn,m = O(mn−1), so the bounds could be stated in terms of
super-polynomial decay in m instead of dn,m.
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(3) However, we cannot prove super-exponential Gaussian-type concentration
with this method, owing to the fact that the dimension dn,m of the sym-
metric tensor space is exponentially smaller than the dimension of the full
tensor space.

Our method of proof essentially follows [8]. We use a well-known concentration of
measure for the Haar measure in high dimensional complex spheres, in conjunction
with a sufficiently sharp bound on the cardinality of a net (of given tolerance)
covering the sphere. For this latter ε-net result, we give a very different proof from
the one due to Gross et al. Much of the present work is to setup the problem in
the restricted setting of symmetric tensors. We now proceed to develop the proper
background and notation required for this task.

2. Background and notation

2.1. Symmetric tensors. We work over a fixed finite-dimensional complex vector
space V , with the main object of interest being the m-mode tensors V ⊗m. There
is a natural action of the symmetric group Sm on V ⊗m, given by the C-linear
extension of

(2.1) σ ·
m⊗
j=1

vj =

m⊗
j=1

vσ−1(j).

A tensor T ∈ V ⊗m is called symmetric if σ · T = T for all σ ∈ Sm. We denote
the subspace of symmetric tensors as Sm(V ) ⊂ V ⊗m.

There is a natural projection Pm : V ⊗m → Sm(V ); it is the C-linear extension
of

Pm

( m⊗
j=1

vj

)
=

1

m!

∑
σ∈Sm

σ ·
( m⊗

j=1

vj

)
.

Then T ∈ V ⊗n is symmetric iff Pm(T ) = T . We denote

Pm

( m⊗
j=1

vj

)
=

m⊙
j=1

vj

and so we may refer to Sm(V ) as V �m.
Note that for any v ∈ V ⊗m, the rank-1 tensor v⊗m is symmetric: v⊗m = v�m.

In fact, any symmetric tensor can be decomposed as a sum of rank-1 tensors.

Proposition 2.1. For each T ∈ Sm(V ), there is a finite sequence {v1, . . . ,vr} in
V such that

(2.2) T =

r∑
j=1

(vj)
⊗m.

Proposition 2.1 holds for any symmetric tensors with entries in an infinite field F,
as proved in [1]. Moreover, the above decomposition holds for tensors with entries
in a finite field F provided #F ≥ m; cf. [6, Proposition 7.2].

Remark 2.2. The minimal r which can be used in (2.2) is called the symmetric
tensor rank of T . Comon conjectured that it is equal to the usual rank of T in
general; until recently this had been shown to hold in certain special cases; cf. [5].
The general conjecture was recently proved false; cf. [16].
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Now, fix a basis {ej}nj=1 of V ; then we can expand any tensor T ∈ V ⊗n in terms
of the tensor basis

{e⊗j : j ∈ [n]m}
where if j = (j1, . . . , jm) ∈ [n]m, then e⊗j =

⊗m
k=1 ejk . The symmetric projections

of these basis tensors, e�j = Pm(e⊗j) =
⊙m

k=1 ejk are not linearly independent,
since σ · e�j = e�j for all σ ∈ Sm. To generate a basis, we consider only nonde-
creasing indices:

[n]↑m = {i = (i1, . . . , im) ∈ [n]m : i1 ≤ · · · ≤ im}.

The set {e�i : i ∈ [n]↑m} is a basis for Sm(V ), and hence

(2.3) dimC(S
m(V )) = #([n]↑m) =

(
n+m−1

m

)
:= dn,m.

Given any j ∈ [n]m, there is a unique i ∈ [n]↑m such that, for some σ ∈ Sm,
σ · j = i. (There may be several σ that work here, but there is only one i ∈ [n]↑m.)
Denote this unique element as i =↑(j). Let us define

c(i) = #{j ∈ [n]m : ↑(j) = i}.

This coefficient can be computed thus: the index i induces a set partition π(i) of
[m], where k ∼π(i) � iff ik = i�. (Thus, if ↑ (j) = i, then π(j) = π(i).) If π(i) has
blocks of sizes m1,m2, . . . ,mb, then

(2.4) c(i) =
m!

m1! · · ·mb!
.

Let T ∈ Sm(V ), and expand T in terms of the standard basis {e⊗i : i ∈ [n]m}
of the full tensor space V ⊗m, and also in terms of the basis {e�i : i ∈ [n]↑m} of
Sm(V ):

T =
∑

j∈[n]m

Tj e⊗j, T =
∑

i∈[n]↑m

T ′
i e�i.

We can express the coefficients T ′
i in terms of the coefficients Tj, as follows. Since

T ∈ Sm(V ), Tj = T↑(j) for all j ∈ [n]m. Thus

T =
∑

j∈[n]m

Tj e⊗j =
∑

i∈[n]↑m

∑
j∈[n]m

↑(j)=i

Tj e⊗j =
∑

i∈[n]↑m

Ti

∑
j∈[n]m

↑(j)=i

e⊗j =
∑

i∈[n]↑m

Ti c(i) e�i.

We conclude that

T ′
i = c(i)Ti.

2.2. The Hilbert–Schmidt inner product. Now we fix an inner product 〈·, ·〉V
on V . This induces an inner product on V ⊗m, typically called the Hilbert–Schmidt
inner product, denoted 〈·, ·〉2. It is the unique sesquilinear extension of〈 m⊗

j=1

vj ,
m⊗
j=1

wj

〉
2

=
m∏
j=1

〈vj ,wj〉V .

The basis {e⊗j : j ∈ [n]m} is orthonormal with respect to the Hilbert–Schmidt inner
product; hence for S, T ∈ V ⊗m,

〈S, T 〉2 =
∑

j∈[n]m

SjTj.
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If S, T ∈ Sm(V ), the Hilbert–Schmidt inner product can be written in terms of the
symmetric coefficients as

〈S, T 〉2 =
〈 ∑

i∈[n]↑m

S′
i e�i,

∑
j∈[n]↑m

T ′
j e�j

〉
2
=

∑
i,j∈[n]↑m

S′
iT

′
j 〈e�i, e�j〉2.

If i, j ∈ [n]↑m are not equal, then for any σ ∈ Sm there will be some index
k ∈ [m] with ik �= jσ(k). Since the original basis is orthonormal, it follows that
〈e�i, e�j〉2 = 0. On the other hand, if i = j, then it is straightforward to compute
that 〈e�i, e�i〉2 = 1

c(i) . Hence, we find that

(2.5) 〈S, T 〉2 =
∑

i∈[n]↑m

1

c(i)
S′
iT

′
i .

In particular, this shows that the basis vectors {e�i : i ∈ [n]↑m} are orthogonal, but
not generally normalized: ‖e�i‖2 = c(i)−1/2. We can then normalize them

(2.6) ê�i =
√
c(i) e�i

to produce an orthonormal basis of Sm(V ). For m = 2 the above basis is referred
to as the Dicke states; cf. [3].

2.3. The spectral norm. In the special case m = 2, V ⊗2 can be identified
with End(V ) (using an inner product on V ) by the linear extension of the map
u ⊗ v �→ uv∗. (In physics notation, this rank-1 linear transformation is usu-
ally denoted |u〉〈v|.) Under this identification, the Hilbert–Schmidt inner prod-
uct introduced above gives the usual Hilbert–Schmidt inner product on matrices:
〈A,B〉2 =

∑n
i,j=1 ĀijBij = Tr(A∗B). While easy to compute, the resulting norm

‖ · ‖2 on matrices is not as widely useful as the spectral norm of A:

‖A‖∞ = max{‖Av‖ : ‖v‖ = 1}.
(For short, we denote the inner product 〈·, ·〉V simply as 〈·, ·〉; the corresponding
norm on V is thus denoted ‖ · ‖.)

Remark 2.3. Another, perhaps more common, term used is operator norm. It is
called the spectral norm because it is the modulus of the largest singular value of
A, i.e., the largest eigenvalue of

√
A∗A.

A nice alternative way to compute the spectral norm is as

‖A‖∞ = max{|〈u, Av〉| : ‖u‖ = ‖v‖ = 1}.
(The Cauchy–Schwarz inequality shows that |〈u, Av〉| ≤ ‖A‖∞; by taking u =
Av/‖Av‖, we see that the maximum is achieved.) At the same time, note that

〈uv∗, A〉2 = Tr((uv∗)∗A) = Tr(vu∗A) = Tr(Avu∗) = 〈u, Av〉.
Hence, using the above identification, a tensor T ∈ V ⊗2, identified as a matrix, has
spectral norm

‖T‖∞ = max{|〈T,u⊗ v〉2| : ‖u‖ = ‖v‖ = 1}.
This prompts the following general definition.

Definition 2.4. The spectral norm ‖ · ‖∞ on V ⊗m is defined by

(2.7) ‖T‖∞ = max

{∣∣∣∣
〈
T,

m⊗
j=1

vj

〉
2

∣∣∣∣ : ‖v1‖ = · · · = ‖vm‖ = 1

}
.
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If m = 1, then ‖v‖∞ = ‖v‖ for v ∈ V ⊗1 = V . As shown above, if m = 2,
the spectral norm corresponds to the spectral norm of matrices under the usual
identification of 2-mode tensors as matrices. In general, the spectral norm is a
tensor norm: it satisfies

(2.8)

∥∥∥∥
m⊗
j=1

vj

∥∥∥∥
∞

=

m∏
j=1

‖vj‖

as can be quickly verified from the definition. As a norm on a finite-dimensional
vector space, it is equivalent to all other norms, including the Hilbert–Schmidt
norm. The distortion in this comparison is as follows.

Lemma 2.5. Let V be an n-dimensional inner product space. Then the Hilbert–
Schmidt norm ‖ · ‖2 and spectral norm ‖ · ‖∞ on V ⊗m satisfy

n−m/2‖T‖2 ≤ ‖T‖∞ ≤ ‖T‖2 ∀ T ∈ V ⊗m.

Proof. The Cauchy–Schwarz inequality implies that∣∣∣∣
〈
T,

m⊗
j=1

vj

〉
2

∣∣∣∣ ≤ ‖T‖2
∥∥∥∥

m⊗
j=1

vj

∥∥∥∥
2

= ‖T‖2
m∏
j=1

‖vj‖.

This yields the inequality ‖T‖∞ ≤ ‖T‖2. Equality holds if and only if T is a rank-1
tensor. Observe next

‖T‖22 =
∑

j∈[n]m

|Tj|2 ≤ nm max{|Tj|2 : j ∈ [n]m}.

Note that |Tj|2 = |〈T, e⊗j〉2|2 ≤ ‖T‖2∞. This yields the inequality n−m/2‖T‖2 ≤
‖T‖∞. �

Remark 2.6. The same argument cannot be applied in the symmetric case. The
tensors e⊗j are product states and so may be used in the computation of ‖T‖∞,
while the tensors ê�j are not product states in general. The proof of Theorem 1.1
requires a much more involved argument.

If the tensor T ∈ V ⊗m happens to be symmetric, i.e., T ∈ Sm(V ), then the
rank-1 tensor in (2.7) can also be taken in Sm(V ), which means it must be of the
form v�m = v⊗m for some unit vector v. This is Banach’s theorem.

Theorem 2.7 (Banach’s theorem, [2]). If T ∈ Sm(V ), then

‖T‖∞ = max{|〈T,v⊗m〉2| : ‖v‖ = 1}.

Example 2.8. We can explicitly compute the spectral norm of any unit symmetric
basis tensor ê�i (as defined in (2.6)). First note that, if i = (i, . . . , i), then êi = e⊗m

i ,
and so ‖êi‖∞ = ‖ei‖m = 1 by (2.8). By Lemma 2.5, these basis elements have
maximal spectral norm in the unit ball in V ⊗m.

More generally, let i = (i1, . . . , im). Before normalizing we have

e�i =
1

m!

∑
σ∈Sm

σ · e⊗i.
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Then

〈e�i,v
⊗m〉2 =

1

m!

∑
σ∈Sm

〈σ · e⊗i,v
⊗m〉2

=
1

m!

∑
σ∈Sm

m∏
k=1

〈eiσ−1(k)
,v〉 = 1

m!

∑
σ∈Sm

m∏
k=1

viσ−1(k)

where vi = 〈ei,v〉. Since multiplication of complex numbers is commutative, all of
the terms in this sum are equal, and so we simply have

〈e�i,v
⊗m〉2 = vi1 · · · vim

and so

‖e�i‖∞ = max{|vi1 · · · vim | : |v1|2 + · · ·+ |vm|2 = 1}.
Computing this maximum is a matter of elementary calculus. The result is as
follows: if π(i) is a partition with blocks of sizes m1, . . . ,mb > 0 (where m1 + · · ·+
mb = m), then

(2.9) ‖e�i‖∞ =

√
mm1

1 · · ·mmb

b

bm
.

The normalization coefficient c(i) in this case is c(i) = m!
m1!···mb!

(cf. (2.4)), and so

(2.10) ‖ê�i‖∞ =
√
c(i)‖e�i‖∞ =

√
m!

mm
·

b∏
j=1

√
m

mj

j

mj !
.

2.4. Geometric measure of entanglement. Let P1(V
⊗n) denote the set of

(unit length) product states:

P1(V
⊗n) = {v1 ⊗ · · · ⊗ vn : ‖v1‖ = · · · = ‖vn‖ = 1}.

The geometric measure of entanglement of a (unit length) tensor T ∈ V ⊗n can be
defined to be the distance from T to P1(V

⊗n),

inf
S∈P1(V ⊗n)

‖S − T‖2.

This quantity is 0 iff T is a product state, thus capturing a sense of how entangled
T is. Squaring it and expanding, and using phase invariance, one sees that it can
be expressed easily in terms of the spectral norm:

inf
S∈P1(V ⊗n)

‖S − T‖22 = 2− 2‖T‖∞.

In particular, we see that ‖T‖∞ = 1 if and only if T is a product state. Gross
et al. [8] dispensed with the distance measure and instead redefined the geometric
measure of entanglement as

E(T ) = −2 log2 ‖T‖∞.

The log2 makes sense from an entropy point of view, and restores the property that
E(T ) = 0 if and only if T is a product state. Lemma 2.5 then shows that, for a
unit length tensor T ,

0 ≤ E(T ) ≤ (log2 n)m.

In particular, for m qubit states, the possible range of the geometric measure of
entanglement is contained in [0,m].
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Example 2.9. Continuing Example 2.8, let i be a multi-index whose partition
π(i) has blocks of sizes m1, . . . ,mb, where m1 + · · · + mb = m. Using Stirling’s
approximation with (2.9) yields

(2.11) E(ê�i) =
1

2

(
b∑

j=1

log2 mj − log2 m

)
+O(b),

where the O(b) constant is in the interval [b log2
√
2π− log2 e, b log2 e− log2

√
2π] ≈

[1.32b − 1.45, 1.45b − 1.32]. Consider the two extreme cases: when b = 1 (so all
indices in i are equal) and when b = m (so all indices in i are distinct). In the former
case, ê�i is a product state and E(ê�i) = 0; in the latter case, each mj = 1 and
so E(ê�i) = (log2 e)m− 1

2 log2 m+O(1) (compare to the maximum possible value
(log2 n)m, where in this case n ≥ m). Generally speaking, the fewer coincidences
among the indices of i, the greater the entanglement of ê�i.

In the case of m qubit Bosons, the basis states are ê(j,m−j); except for the
pure states with j = 0,m, we have b = 2. Then (2.11) yields E(ê(j,m−j)) =
1
2 log2(j(m− j))− log2 m+O(1). This is maximized at j = m

2 , yielding the precise

estimate E(ê(j,m−j)) ≤ 1
2 log2 m + c where 0.20 < c < 0.56; this is a factor of 2

smaller than the typical value for mixed states; cf. Theorem 1.2.

2.5. Boson quantum states. Quantum states in an m-partite system are not
exactly given by unit length tensors in V ⊗n. Two tensors that are equal up to
a complex phase factor represent the same quantum state. This is true in the
symmetric case as well. The set of Boson quantum states Bm(V ) is the quotient
of the unit sphere Sm

1 (V ) in Sm(V ) by the relation T ∼ ζT for all ζ in the unit
circle in C:

Bm(V ) = {T ∈ Sm
1 (V ) : T ∼ ζT ∀ |ζ| = 1}.

We generally denote Boson states in Bm(V ) using uppercase Greek letters Ψ and
Φ, and reserve T for tensors (not modding out by phase factors).

Note that the spectral norm (2.7) is invariant under multiplication by a complex
phase, and so it descends to Bm(V ); similarly, the geometric measure of entangle-
ment also descends to Bm(V ). Nonetheless, we must be a little careful treating
Bm(V ) as a metric space, since the distance between two distinct quantum states is
not well defined in terms of the distance between two representative tensors (that
can each be multiplied by independent phase factors). We therefore define, for two
states,

(2.12) ‖Ψ− Φ‖2 := min{‖S − T‖2 : S ∈ Ψ, T ∈ Φ}.

That is, fixing any two representative tensors S0 ∈ Ψ and T0 ∈ Φ,

‖Ψ− Φ‖2 = min
|ζ|=|η|=1

‖ηS0 − ζT0‖2 = min
|ζ|=1

‖S0 − ζT0‖2.

It is straightforward to check that this makes Bm(V ) into a compact metric space;
the distance function evidently satisfies the triangle inequality, and it yields 0 if
and only if S0 = ζT0 for some |ζ| = 1, which is precisely to say that Φ = Ψ.

We now introduce the Haar probability measure on Bm(V ) we use in Theorem
1.2. The Hilbert–Schmidt inner product on Sm(V ) identifies Sm

1 (V ) with a unit
sphere. To be definite, we use the orthonormal basis {ê�i : i ∈ [n]↑m} to identify
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Sm
1 (V ) isometrically with the unit sphere in C[n]↑m :

C
[n]↑m � (zi) �→

∑
i∈[n]↑m

ziê�i.

Letting dn,m = #[n]↑m =
(
n+m−1

m

)
(2.3), this means Sm

1 (V ) is isometrically isomor-

phic to the sphere S2dn,m−1. Since the uniform measure on the sphere is invariant
under rotations, any other identification (i.e., choice of orthonormal basis) would
yield the same measure.

Thus, there is a surjective linear map

S
2dn,m−1 → Sm

1 (V ) → Bm(V )

given by composing the above isomorphism with the natural projection map Sm
1 (V )

→ Bm(V ). We refer to the push forward of the uniform probability measure on
S2dn,m−1 to Bm(V ) as the Haar measure on Bosons. Note: the uniform measure
on S2dn,m−1 is invariant under the map T �→ ζT for any phase ζ, and so the Haar
measure on Bm(V ) is essentially the same as the Haar measure on Sm

1 (V ).

3. Proofs of the theorems

3.1. Proof of Theorem 1.1. Since E(Ψ) ≥ 0 for all Ψ, our goal is to prove that
−2 log2 ‖Ψ‖∞ ≤ log2

(
n+m−1

m

)
, or equivalently,

(3.1) ‖Ψ‖2∞ ≥ 1(
n+m−1

m

) ∀Ψ ∈ Bm(Cn).

Since the spectral norm is invariant under multiplication by a phase, we may work
directly with symmetric tensors T (instead of Boson quantum states Ψ in the quo-
tient space).

The key result needed is the following invariance statement, which can be found
as [15, Lemma 4.3.1].

Proposition 3.1. Let S1(Cn) denote the sphere {v ∈ Cn : ‖v‖ = 1} in Cn. Let Pv

denote the orthogonal projection operator from C
n onto the span of v; in physics

notation, Pv = |v〉〈v|. Then for any symmetric tensor T ∈ Sm(Cn),

(3.2)

∫
S1(Cn)

P⊗m
v (T ) dv =

(
n+m−1

m

)−1
T,

where the integral is taken with respect to the Haar probability measure on S1(Cn).

In [15], this is proved by direct calculation. An equivalent result is proved combi-
natorially (using the representation theory of U(n)) in [13, Corollary 2.2]. We give
an independent proof here that uses only elementary representation theory (Schur’s
lemma). We first need the following (well-known) lemma.

Lemma 3.2. Let ρm : U(n) → GL(Sm(Cn)) denote the complex representation
given by

ρm(U)(v1 � · · · � vm) = (Uv1)� · · · � (Uvm).

Then ρm is irreducible.

Proof. First, note that ρm extends (by the same formula) to a complex represen-
tation of GL(n,C). It is one of the statements of the Schur–Weyl duality that this
representation—the m-fold symmetric tensor power of the standard representation
of GL(n,C)—is irreducible; see, for example, [9, Theorem 6.3(4)].
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To conclude the proof, we note that any irreducible complex representation of
GL(n,C) restricts to an irreducible representation of U(n). Indeed, since both
groups are connected, irreduciblity of a group representation ρ is equivalent to
irreducibility of the associated Lie algebra representation dρ. But the Lie alge-
bra gl(n,C) of GL(n,C) is the complexification of the Lie algebra u(n) of U(n):
gl(n,C) = u(n) ⊕ iu(n). Hence, any complex subspace invariant under dρ|u(n) is
automatically invariant under dρ. �

Proof of Proposition 3.1. For T ∈ Sm(Cn), let R(T ) denote the left-hand side of
(3.2); so R ∈ End(Sm(Cn)). We will show that R is a constant multiple of the
identity on Sm(Cn).

Let ρm : U(n) → GL(Sm(Cn)) be the irreducible representation in Lemma 3.2.
It is a simple matter to compute that, for v,w ∈ Cn and U ∈ U(n),

P⊗m
v ρm(U)(w⊗m) = 〈v, Uw〉mv⊗m = 〈U∗v,w〉mv⊗m.

Now using the unitary invariance of the Haar probability measure, we have

Rρm(U)(w⊗m) =

∫
S1(Cn)

〈U∗v,w〉mv⊗m dv =

∫
S1(Cn)

〈v,w〉m(Uv)⊗m dv.

On the other hand, note that

ρm(U)P⊗m
v (w⊗m) = 〈v,w〉mρm(U)(v⊗m) = 〈v,w〉m(Uv)⊗m.

Passing the integral through the linear operator ρm(U), we conclude that

Rρm(U)(w⊗m) = ρm(U)R(w⊗m)

for each U ∈ U(n). By Proposition 2.1, any T ∈ Sm(Cn) is a linear combination
of rank-1 tensors of the form w⊗m for some w ∈ Cn; thus, we conclude that the
irreducible representation ρm commutes with R on Sm(Cn). By Schur’s lemma, it
follows that R = c · IdSm(Cn) for some constant c ∈ C.

To compute the constant c, we follow [15] and use the fact that Pv is a rank-1
projection, hence has trace 1. Thus Tr(P⊗m

v ) = Tr(Pv)
m = 1, and so

Tr(R) =

∫
S1(Cn)

Tr(Pv)
m dv =

∫
S1(Cn)

dv = 1.

Thus 1 = Tr(R) = Tr(c · IdSm(Cn)) = c · dimC(S
m(Cn)). The result now follows

from (2.3). �

Remark 3.3. It is important to note that the preceding proof fundamentally requires
the underlying vector space to be complex: both for the use of the Schur–Weyl du-
ality in Lemma 3.2, and the use of Schur’s lemma in Proposition 3.1. In fact, the
result is not true in the real setting. This can be seen by giving a more direct
computational proof of the proposition, computing the integral in spherical coordi-
nates. In that case, in the Rn setting, the integral R(T ) is equal to cT plus �n/2�
additional lower-order terms: contractions of T with strictly positive coefficients.

Proof of Theorem 1.1. We proceed to prove (3.1); as discussed above, this suffices
to prove Theorem 1.1. Also as noted above, it suffices to work with symmetric
tensors T ∈ Sm

1 (Cn), rather than Boson quantum states Ψ ∈ Bm(Cn).
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Let T ∈ Sm
1 (Cn) be a symmetric tensor, with length 〈T, T 〉2 = 1. Applying

Proposition 3.1, taking inner products with T , we have

(3.3)

∫
S1(Cn)

〈T, P⊗m
v (T )〉2 dv = 〈R(T ), T 〉2 =

(
n+m−1

m

)−1〈T, T 〉2 =
(
n+m−1

m

)−1
.

Now, let us compute the integrand. By Proposition 2.1, decompose T =
∑r

j=1 w
⊗m
j

for some vectors wj ∈ C
n. Then

〈T, P⊗m
v (T )〉2 =

r∑
j,k=1

〈
w⊗m

j , 〈v,wk〉mv⊗m
〉
2
=

r∑
j,k=1

〈v⊗m,w⊗m
k 〉2〈w⊗m

j ,v⊗m〉2.

Distributing the sums inside the inner products, we therefore have

〈T, P⊗m
v (T )〉2 = 〈v⊗m, T 〉2〈T,v⊗m〉2 = |〈T,v⊗m〉2|2.

Hence, (3.3) shows that the average value of the function v �→ |〈T,v⊗m〉2|2 on the

sphere is
(
n+m−1

m

)−1
. This is a continuous function, and hence by the mean value

theorem for integrals, we conclude (from (2.7)) that

‖T‖2∞ = max
v∈S1(Cn)

|〈T,v⊗m〉2|2 ≥
∫
S1(Cn)

|〈T,v⊗m〉2|2 dv =
(
n+m−1

m

)−1
.

This holds true for every unit length symmetric tensor T , establishing the validity
of (3.1), and concluding the proof. �

3.2. ε-nets on boson states. The proof of our main Theorem 1.2 has two ingre-
dients. The first is a bound on the size of an ε-net for the Boson sphere B1(Cn).

Definition 3.4. Let X be a compact metric space, and let ε > 0. An ε-net for X
is a finite subset N ⊆ X with the property that, for each x ∈ X, there is a point
y ∈ N with d(x, y) < ε/2; i.e., X is covered by ε/2-balls centered at points of N.

Lemma 3.5. Let 0 < ε < 1, and n ∈ N. The metric space B1(Cn) possesses an
ε-net N(ε, n) with cardinality ≤ Kn/ε

2(n−1), where Kn ≤ 2n+1nn.

Proof. For any v = (v1, . . . , vn) ∈ C
n, there is some ζ ∈ C with |ζ| = 1 so that

ζv1 ∈ R. Hence, if we produce an ε-net for the set S′ = {v ∈ Cn : ‖v‖ = 1, v1 ∈ R},
then the projection of this set into B1(Cn) will still be an ε-net (since the projection
is a contraction by (2.12)). The set S′ is the unit sphere in R× Cn−1 ∼= R2n−1, so
we need to produce an ε-net for the sphere S2(n−1) ⊂ R2n−1.

To produce such a (crude) net, we circumscribe the sphere in a box in R2n−1.
We put grid points on the 2(2n− 1) faces, each of which is a unit box of dimension
2(n− 1), and radially project them onto the sphere. The radial projection inward
is a contraction, so it suffices for the points on the surface of the box to form an
ε-net.

Thus, we populate each of the 2(2n−1) faces with grid points, given grid spacing
1
N for N to be chosen shortly. The maximal distance between any two grid points is

the box-diagonal
√
2(n− 1)/N , and so the maximal distance between any point in

the face and its nearest grid point is ≤
√
2(n− 1)/2N . So we must choose N large

enough that
√
2(n− 1)/2N < ε/2, i.e., N >

√
2(n− 1)/ε. The corresponding

number of grid points is N2(n−1) per face, and with 2(2n − 1) faces, this gives
2(2n− 1)N2(n−1) grid points.
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Since we only need to choose N any small amount larger than
√
2(n− 1)/ε, we

can construct an ε-net with any number of points larger than this bound. (This
requires possibly choosing a noninteger N , but this can be done by having a grid
with one row spaced closer than all the others.) Since 2(2n−1)(

√
2(n− 1))2(n−1) =

2n+1(n− 1
2 )(n− 1)n−1 < 2n+1nn, this completes the proof. �

Remark 3.6. The above is a blunt overestimate. For example, an elementary ar-
gument using polar coordinates with n = 2 shows that K2 can be taken ≤ π, as
opposed to 32. However, the ε2(n−1) in the denominator is sharp, for any ε-net of
S2(n−1).

3.3. Concentration of measure. The second ingredient we need is a concentra-
tion of measure inequality which follows essentially unchanged from [10,14].

Lemma 3.7. Let d ∈ N, and fix a point x ∈ S2d−1 ⊂ Cd. Let Z be a Haar-
distributed random variable on S

2d−1. Then for 0 < ε < 1,

P(|〈Z,x〉| ≥ ε) ≤ e−(2d−1)ε2 .

We will also need the following basic norm inequality.

Lemma 3.8. For any v,w ∈ Cn,

(3.4) ‖v⊗m −w⊗m‖2 ≤ m ·max{‖v‖, ‖w‖}m−1‖v −w‖.

Proof. This can be found as [4, Theorem 3.9]. �

Corollary 3.9. Let 0 < ε < 1, n,m ∈ N, and let N(ε/m, n) be an ε/m-net for
B1(Cn); cf. Lemma 3.5. Let Ψ ∈ Bm(Cn) be a Boson state with ‖Ψ‖∞ ≥ ε. Then
there is some element v ∈ N(ε/m, n) such that |〈Ψ,v⊗m〉| ≥ ε/2.

Proof. We prove the contrapositive: suppose that |〈Ψ,v⊗m〉2| < ε/2 for all v ∈
N(ε/m, n). By Banach’s Theorem 2.7, there is some element v0 ∈ B1(Cn) with
‖Ψ‖∞ = |〈Ψ,v⊗m

0 〉2|. By definition, there is some element v ∈ N(ε/m, n) with
‖v0 − v‖ < ε/2m. Since v0 and v have length 1, Lemma 3.8 implies that ‖v⊗m

0 −
v⊗m‖2 < ε/2. Thus

‖Ψ‖∞ = |〈Ψ,v⊗m
0 〉2| ≤ |〈Ψ,v⊗m〉2|+ |〈Ψ,v⊗m

0 − v⊗m〉2|

<
ε

2
+ ‖Ψ‖2‖v⊗m

0 − v⊗m‖2 < ε

where the penultimate inequality follows from the Cauchy–Schwarz inequality and
the fact that Ψ has length 1. �

As an immediate consequence of Corollary 3.9, we see that, with respect to any
probability measure on states Ψ ∈ Bm(Cn),

P(‖Ψ‖∞ ≥ ε) ≤ P

(
max

v∈N(ε/m,n)
|〈Ψ,v⊗m〉2| ≥ ε/2

)
.

From the union bound, it therefore follows that

(3.5) P(‖Ψ‖∞ ≥ ε) ≤ #N(ε/m, n) · max
v∈N(ε/m,n)

P(|〈Ψ,v⊗m〉2| ≥ ε/2).

Using Lemmas 3.5 and 3.7, we thus deduce the following.
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Proposition 3.10. Let 0 < ε < 1, and n,m ∈ N. Let dn,m =
(
n+m−1

m

)
. With

respect to the Haar measure on elements Ψ ∈ Bm(Cn) (discussed in Section 2.5),

P(‖Ψ‖∞ ≥ ε) ≤ Knm
2(n−1)

ε2(n−1)
e−(2dn,m−1)ε2/4.

Proof. The Haar measure on Bm(Cn) is the push forward of the Haar measure on
S2dn,m−1. Since the modulus of the inner product is invariant under a complex
phase, we may apply Lemma 3.7 to conclude that, for any fixed Φ0 ∈ Bm(Cn),

P(|〈Ψ,Φ0〉2| ≥ ε/2) ≤ e−(2dn,m−1)ε2/4.

Applying this with Φ0 = v⊗m for the maximizing v ∈ N(ε/m, n) in (3.5), and
applying Lemma 3.5, yields the result. �

Let us note that, in the qubit case n = 2, by Remark 3.6, we have K2 ≤ π, and
in this case Proposition 3.10 says

(3.6) P(‖Ψ‖∞ ≥ ε) ≤ πm2

ε2
e−(2m+1)ε2/4.

3.4. Proof of Theorem 1.2. As above, let dn,m =
(
n+m−1

m

)
. Here we have n fixed

and m potentially large. Let

ε2 = 2n3 log2 dn,m
dn,m

.

Since m �→ dn,m is an increasing function of m for each fixed n, and since x �→ log2 x
x

tends to 0 as x → ∞, there is some m0(n) so that 2n3 log2 dn,m

dn,m
< 1 for m ≥ m0(n).

Applying Proposition 3.10, this yields

(3.7) P

(
‖Ψ‖2∞ ≥ 2n3 log2 dn,m

dn,m

)
≤ Knm

2(n−1)

(2n3 log2 dn,m

dn,m
)n−1

e
−(2dn,m−1)·n3

2

log2 dn,m
dn,m .

Rearrange the upper bound as a product of three terms:

(3.8)
Kn

(2n3)n−1
·m2(n−1)(dn,m)n−1e−n3 log2 dn,m · e

n3

2

log2 dn,m
dn,m

(log2 dn,m)n−1
.

For the first factor in (3.8), Lemma 3.5 gives

(3.9)
Kn

(2n3)n−1
≤ 2n+1nn

(2n3)n−1
=

4

n2n
.

For the second factor in (3.8), we begin by noting that

dn,m =

(
m+ n− 1

m

)
=

(
m+ n− 1

n− 1

)

=
(m+ n− 1)(m+ n− 2) · · · (m+ 1)

(n− 1)!
≥ mn−1

(n− 1)!
.

Thus m2(n−1) ≤ (n − 1)!2(dn,m)2. Stirling’s approximation yields (n − 1)! ≤
e−(n−1)nn−1/2, and so the second term in (3.8) is bounded above by

(n− 1)!2(dn,m)n+1e−n3 ln dn,m
ln 2 ≤ e−2(n−1)n2n(dn,m)n+1− 1

ln 2n
3

< e−2(n−1)n2n(dn,m)−n3
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for n ≥ 2. Combining this with (3.9), we see that the first two factors in (3.8) are
bounded above by

(3.10) 4e−2(n−1)(dn,m)−n3

.

For the third term in (3.8), we’ve already chosen m ≥ m0(n) so that 2n3 log2 dn,m

dn,m
<

1, and thus the exponential factor is < 1
4 . Hence, we have shown that, for m ≥

m0(n),

P

(
‖Ψ‖2∞ ≥ 2n3 log2 dn,m

dn,m

)
≤ 4e−2(n−1)+ 1

4

(log2 dn,m)n−1
(dn,m)−n3

.

When n ≥ 2, 4e−2(n−1)+ 1
4 ≤ 4e−

7
4 < 1, and the denominator is ≥ 1, so the upper

bound may be taken as just (dn,m)−n3

. Taking − log2 of both sides of the inequality
inside the P then verifies (1.2).

If we simply evaluate (1.2) at n = 2, we get the estimate

P

(
E(Ψ) ≥ log2(m+ 1)− log2 log2(m+ 1)− 4

)
≥ 1− 1

(m+ 1)8
for m ≥ 108.

(There is nothing sacrosanct about the exponent n3; as the above analysis shows, at
the expense of increasing the constant m0(n) and a larger additive constant inside
P, we can have any exponent we like, so the probability decays super-polynomially.)

To derive (1.3), we make a more careful analysis using (3.6). Let α > 0, and set

ε2 = α log2(m+1)
m+1 . We must choose m large enough that this is < 1. Mimicking the

preceding analysis, we find that

P

(
‖Ψ‖2∞ ≥ α

log2(m+ 1)

m+ 1

)
≤ πm2(m+ 1)

α log2(m+ 1)
e−(2(m+1)−1)α

4
log2(m+1)

m+1

≤ π

α
·m2(m+ 1)(m+ 1)−

α
2 ln 2 · e

α
4

log2(m+1)
m+1

log2(m+ 1)
.

Due to the condition ε2 < 1, the last term is < e
1
4 , and so we have the general

estimate

P

(
‖Ψ‖2∞ ≥ α

log2(m+ 1)

m+ 1

)
≤ πe

1
4

α
m− α

2 ln 2+3 provided
log2(m+ 1)

m+ 1
<

1

α
.

Taking α = 8 which is larger than 2πe
1
4 , we have − 8

2 ln 2 + 3 < − 5
2 , and it is easy

to verify that log2(m+1)
m+1 < 1

8 for m > 42. This justifies (1.3), concluding the proof.
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