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Abstract. In this paper, we consider the weighted p-Laplacian Lichnerowicz
equation

�p,fu+ cuσ = 0

on smooth metric measure spaces, where c ≥ 0, p > 1, and σ ≤ p − 1 are real
constants. A local gradient estimate for positive solutions to this equation is
derived, and as applications, we give a corresponding Liouville property and
Harnack inequality.

1. Introduction

We mainly consider some existence results for positive solutions to p-Laplacian
Lichnerowicz type equations on smooth metric measure space. Smooth metric mea-
sure space is a triple (M, g, dμ), where (M, g) is a complete n-dimensional Riemann-
ian manifold and dμ := e−fdv with f a fixed smooth real-valued function on M.
Denote by ∇,�, and Hess the gradient, Laplace, and Hessian operators, and by
dv the Riemannian volume measure. The smooth metric measure space carries
a natural analog of the Ricci curvature, the so-called m − Bakry − Émery Ricci
curvature, which is defined as

Ricmf := Ric+Hessf − ∇f ⊗∇f

m− n
(n < m ≤ ∞).

In particular, when m = ∞, Ric∞f := Ricf := Ric+Hessf is the classical Bakry−
Émery Ricci curvature, which was introduced by Bakry-Émery [2] in the study of
diffusion processes and has been extensively investigated in the theory of Ricci flow.
The case where m = n is only defined when f is a constant function. There is also
an analog of the p-Laplacian, that is, the weighted p-Laplacian, which is defined by

�p,f := efdiv(e−f |∇u|p−2∇u).

It is also understood in the distribution sense.
Gradient estimates are an important tool in geometric analysis and have been

used, among other things, to derive Liouville theorems and Harnack inequalities
for positive solutions to a variety of nonlinear equations on Riemannian manifolds.
Kotschwar and Ni [6] established a local gradient estimate for p-harmonic functions
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under the assumption that the sectional curvature is bounded from below. However,
their computation involves the Hessian of the distance function when the cut-off
function is introduced, so the condition about the sectional curvature has to be
assumed. Recently, Wang and Zhang [15] studied p-harmonic functions and derived
a local gradient estimate and Harnack inequality with constants depending only on
the lower bound of the Ricci curvature, the dimension of manifolds, and the radius
of the ball. For the weighted p-Laplacian equation on metric measure space, some
results about gradient estimates and the Liouville property were given in [12] and
[13].

For the p-Laplacian Lichnerowicz equation

(1.1) �p,fu+ cuσ = 0

on noncompact smooth metric measure space, here c ≥ 0, p > 1, σ ≤ p − 1. This
equation can be seen as a simple version of the Lichnerowicz equation which arises
from the Hamiltonian constraint equation for the Einstein-scalar field system in
general relativity (see [3,4,11] and the references therein). When p = 2, Ma [7–10]
studied the existence and stability of positive solutions to the Lichnerowicz equa-
tion. Li and Zhu [5] also studied the simple Lichnerowicz equation and derived
corresponding gradient estimates. The first author of this paper proved some gra-
dient estimates for this equation, which can be referred to in [17–19]. However, if
p > 1, the p-Laplacian Lichnerowicz equation is referred to as a generalized scalar
curvature type equation; it is an extension of the equation of prescribed scalar cur-
vature. The problem of positive solutions to the p-Laplacian Lichnerowicz equation
was considered in [4] in the case of a compact manifold, and then Benalili and Maliki
[1] extended the corresponding results to the complete Riemannian manifolds.

In this paper, we will establish the local gradient estimate for positive solutions
to equation (1.1).

Theorem 1.1. Let (M, g, dμ) be a smooth metric measure space with Ricf,m ≥
−(m − 1)K, where K is a positive constant. Suppose that u is a positive solution
to (1.1) on the ball Bo(R) ⊂ M under the condition σ ≤ p − 1, p > 1. Then there
exists a constant Cp,m such that

|∇u|
u

≤ Cp,m
(1 +

√
KR)

3
4

R
.

As applications of Theorem 1.1, we can obtain the following two corollaries.

Corollary 1.2. If the positive solution u is defined globally on manifolds, then we
get only constant solutions to equation (1.1).

Corollary 1.3. Under the same conditions as in Theorem 1.1, given any x, y ∈
Bo(

R
2 ) and any minimal geodesic γ(s) : [0, 1] → Bo(

R
2 ) with γ(0) = x, γ(1) = y, the

following Harnack inequality holds:

u(x) ≤ u(y)ρ(x,y)Cp,m
1+

√
KR

R ,

where ρ = ρ(x, y) denotes the geodesic distance x and y.

2. Proof of Theorem 1.1

Assume that u is a positive solution to (1.1). The linearized operator of the
weighted p-Laplacian at point u ∈ C2(M) is given by

Lf (ψ) = efdiv(e−f |∇u|p−2A(∇ψ)),



GRADIENT ESTIMATES FOR p-LAPLACIAN LICHNEROWICZ EQUATION 5453

where

Aij = gij + (p− 2)
∇u⊗∇u

|∇u|2 .

We should mention that since equation (2.1) can be either degenerate or singular
at the points such that |∇u| = 0, we usually use an ε-regularization technique by
replacing the linearized operator Lf with its approximate operator, i.e.,

Lf,ε(ψ) = efdiv(e−fw
p
2−1
ε Aε(∇ψ)),

where ε > 0, wε = |∇uε|2 + ε, Aε = gij + (p − 2)∇uε⊗∇uε

|∇u|2 , and uε is a solution to

the approximate equation

efdiv(e−fw
p
2−1
ε ∇uε) + cuσ

ε = 0.

In order to avoid tedious presentation, we omit the details. The interested reader
can refer to [7] for details.

Lemma 2.1 (See [14]). Let (M, g, dμ) be a smooth metric measure space. Given a
C3 function u, if |∇u| �= 0, then

Lf (|∇u|p) = p|∇u|2p−4(|Hess u|2A +Ricf (∇u,∇u)) + p|∇u|p−2〈∇u,∇�p,fu〉,
where |Hess u|2A = AikAjluijukl.

Set v = (p− 1) log u. From Lemma 2.1, we can obtain

Lf (|∇v|p) = p|∇v|2p−4(|Hess v|2A +Ricf (∇v,∇v)) + |∇v|p−2〈∇v,∇�p,fv〉.
Moreover, in terms of v, equation (1.1) has the following form:

�p,fu+ cuσ = efdiv(e−f |∇e
v

p−1 |p−2∇e
v

p−1 ) + ce
vσ
p−1

= (p− 1)1−pev(|∇v|p +�p,fv) + ce
vσ
p−1

= 0.

That is to say,

(2.1) �p,fv = −c(p− 1)p−1e(
σ

p−1−1)v − |∇v|p.
Let w = |∇v|2. Note that in terms of w,

�p,fw = efdiv(e−fw
p−2
2 ∇v)

= w
p−2
2 �fv +

p− 2

2
〈∇w,∇v〉.

Therefore, equation (2.1) has the equivalent form

(2.2) w
p−2
2 �fv +

p− 2

2
〈∇w,∇v〉 = −c(p− 1)p−1e(

σ
p−1−1)v − w

p
2 .

Assume that Q = |∇v|p. Then

Lf (Q) = pwp−2[|Hess v|2A +Ricf (∇v,∇v)]− pw
p
2−1〈∇v,∇Q〉 − cph(

σ

p− 1
− 1)Q,

where h = (p− 1)p−1e(
σ

p−1−1)v.
Now we are in position to estimate |∇∇v|2A. We only need to estimate it over

the points where w > 0. Choose a local orthonormal frame {ei}ni=1 near any such
given point so that ∇v = |∇v|e1. Then w = v21 , w1 = 2vi1vi = 2v11v1, and for
j ≥ 2, wj = 2vj1v1. Hence 2vj1 =

wj

w
1
2
.
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From (2.2), we immediately deduce that

n∑
j=2

vjj = −chw1− p
2 − (

p

2
− 1)

w1v1
w

− v11 + f1v1 − w

= −chw1− p
2 − (p− 1)v11 + f1v1 − w.

It is easy to see that

|Hess v|2A = |Hess v|2 + (p− 2)2

4w2
〈∇v,∇w〉2 + p− 2

2w
|∇w|2

=

n∑
i,j=1

v2ij + (p− 2)v211 + 2(p− 2)

n∑
j=1

v2ij

= (p− 1)2v211 + 2(p− 1)
n∑

j=2

v21j +
n∑

i,j=2

v2ij

≥ (p− 1)2v211 + 2(p− 1)
n∑

j=2

v21j +
1

n− 1

( n∑
j=2

vjj
)2
.

Therefore, we have

|Hess v|2A ≥ (p− 1)2v211 + 2(p− 1)

n∑
j=2

v21j

+
1

n− 1

(
− chw1− p

2 − (p− 1)v11 + f1v1 − w
)2

≥ α

n∑
j=1

v2j1 +
1

m− 1
(chw1− p

2 + w)2

+
2(p− 1)v11

m− 1
(chw1− p

2 + w)− (f1v1)
2

m− n
,

where α = min{2(p−1), m(p−1)2

m−1 }, and we applied the inequality (a−b)2 ≥ a2

1+δ −
b2

δ

with δ = m−n
n−1 > 0. Substituting the identities,

2wv11 = 〈∇v,∇w〉,
n∑

j=1

v2j1 =
1

4

|∇w|2
w

,

we can obtain

|Hess v|2A ≥ α

4

|∇w|2
w

+
w2

m− 1
(chw− p

2 + 1)2

+
p− 1

m− 1
(1 + chw

−p
2 )〈∇v,∇w〉 − (f1v1)

2

m− n
.
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By the assumption that Ricmf ≥ −(m− 1)K, we have

Lf (Q) = Lf (w
p
2 )

≥ pwp−2[
α

4

|∇w|2
w

+
1

m− 1
(w + ch(chw1− p

2 ))2

+
p− 1

m− 1
(1 + chw

−p
2 )〈∇v,∇w〉]

−pwp−2Ricmf (∇v,∇v)− pw
p
2−1〈∇v,∇w

p
2 〉 − cph(

σ

p− 1
− 1)w

p
2

=
αp

4
wp−3|∇w|2 + p

m− 1
wp(1 + chw

−p
2 )2

+
p(p− 1)

m− 1
wp−2(1 + chw

−p
2 )〈∇v,∇w〉

−p(m− 1)Kwp−1 − pw
p
2−1〈∇v,∇w

p
2 〉 − cph(

σ

p− 1
− 1)w

p
2

≥ αp

4
wp−3|∇w|2 + p

m− 1
wp(1 + chw

−p
2 )2

+
p(p− 1)

m− 1
wp−2(1 + chw

−p
2 )〈∇v,∇w〉

−p(m− 1)Kwp−1 − p2

2
wp−2〈∇v,∇w〉

=
αp

4
wp−3|∇w|2 + p

m− 1
wp(1 + chw

−p
2 )2

+[
p(p− 1)

m− 1
(1 + chw

−p
2 )− p2

2
]wp−2〈∇v,∇w〉 − p(m− 1)Kwp−1.

The above inequality holds wherever w is strictly positive. Let K = {x ∈ Ω :
w(x) = 0}; here Ω ⊂ M is an open set. Then for any nonnegative function ψ with
compact support in Ω \K, we have

−
∫
Ω

〈1
2
wp−2∇w +

1

2
(p− 2)wp−3〈∇v,∇w〉∇v,∇ψ

〉

≥
∫
Ω

(αp
4
wp−3|∇w|2 + p

m− 1
wp(1 + chw

−p
2 )2

+[
p(p− 1)

m− 1
(1 + chw

−p
2 )− p2

2
]wp−2〈∇v,∇w〉 − p(m− 1)Kwp−1

)
ψ.

In particular, let ε > 0 and ψ = wb
εη

2, where wε = (w − ε)+, η ∈ C∞
0 (BR) is

nonnegative; b > 1 is to be determined later. Then direct computation yields

∇ψ = bwb−1
ε η2∇w + 2wb

εη∇η.

We have

−
∫
Bo(R)

〈1
2
wp−2∇w +

1

2
(p− 2)wp−3〈∇v,∇w〉∇v, bwb−1

ε η2∇w + 2wb
εη∇η

〉

≥
∫
Bo(R)

(αp
4
wp−3|∇w|2 + p

m− 1
wp(1 + chw

−p
2 )2(2.3)

+ [
p(p− 1)

m− 1
(1 + chw

−p
2 )− p2

2
]wp−2〈∇v,∇w〉 − p(m− 1)Kwp−1

)
wb

εη
2.



5456 LIANG ZHAO AND DENGYUN YANG

There are two terms on the left hand side of (2.3) we need to estimate. Under the
condition 1 < p ≤ 2, we can estimate them as follows:∫

Bo(R)

w
p−1
2 wb−1

ε |∇w|2 + (p− 2)

∫
Bo(R)

w
p−2
2 〈∇v,∇w〉wb−1

ε

≥ (p− 1)

∫
Bo(R)

w
p−1
2 wb−1

ε |∇w|2,

since v ∈ C1,α, w ∈ Cα, and ∇w ∈ Lγ(Ω) for some α > 0 and γ > 1. Thus, all the
other terms in (2.3) converge to the corresponding form without ε. By passing ε to

0 and letting β = 1 + chw
−p
2 , we have

−
∫
Bo(R)

b(p− 1)

2
wp+b−3η2|∇w|2 −

∫
Bo(R)

wp+b−2η〈∇w,∇η〉

−
∫
Bo(R)

(p− 2)wp+b−3η〈∇w,∇η〉〈∇w,∇v〉

≥
∫
Bo(R)

αp

4
wp+b−3|∇w|2η2 +

∫
Bo(R)

β2

m− 1
wp+bη2

+

∫
Bo(R)

(
p− 1

m− 1
β − p

2
)wp+b−2η2〈∇w,∇v〉 −

∫
Bo(R)

(m− 1)wp+b−1Kη2.

Since

−
∫
Bo(R)

wp+b−2η〈∇w,∇η〉 −
∫
Bo(R)

(p− 2)wp+b−3η〈∇w,∇η〉〈∇w,∇v〉

≤ (1 + |p− 2|)
∫
Bo(R)

wp+b−2|∇w||∇η|η,

with these inequalities we can get

(1 + |p− 2|)
∫
Bo(R)

wp+b−2|∇w||∇η||η| +
∫
Bo(R)

p

2
wp+b−2η2〈∇w,∇v〉

≥
∫
Bo(R)

[
α

4
+

b(p− 1)

2
]wp+b−3η2|∇w|2 +

∫
Bo(R)

β2

m− 1
wp+bη2

+

∫
Bo(R)

(
p− 1

m− 1
β)wp+b−2η2〈∇w,∇v〉 −

∫
Bo(R)

(m− 1)wp+b−1Kη2.

From now on we use a1, a1, · · · and d1, d1, · · · to denote constants depending only
on p and m. The constant b > 1 is to be determined later.

It is easy to see that

(1 + |p− 2|)
∫
Bo(R)

wp+b−2|∇w||∇η||η|

≤ (p− 1)b

6

∫
Bo(R)

wp+b−3|∇w|2η2 +
∫
Bo(R)

a1
b

∫
Bo(R)

wp+b−1|∇η|2.

We also have∫
Bo(R)

p

2
wp+b−2η2〈∇w,∇v〉 ≤ p

2

∫
Bo(R)

wp+b− 3
2 η2|∇w|

≤ (p− 1)b

6

∫
Bo(R)

wp+b−3|∇w|2η2 + a2
b

∫
Bo(R)

wp+bη2,
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and the following inequality holds:∫
Bo(R)

(
p− 1

m− 1
β)wp+b−2η2〈∇w,∇v〉

≥ −
∫
Bo(R)

(
p− 1

m− 1
β)wp+b− 3

2 η2|∇w|

≥ − (p− 1)b

6

∫
Bo(R)

wp+b−3|∇w|2η2 − a3
b

∫
Bo(R)

β2wp+bη2.

Combining these inequalities, we derive

−
∫
Bo(R)

α

4
wp+b−3η2|∇w|2 + a2

b

∫
Bo(R)

wp+bη2 + (
a3
b

− 1

m− 1
)

∫
Bo(R)

β2wp+bη2

+

∫
Bo(R)

a1
b

∫
Bo(R)

wp+b−1|∇∇η|2

≥ −
∫
Bo(R)

(m− 1)wp+b−1Kη2

by requiring that

(2.4)
a3
b

− 1

m− 1
≤ 0.

Since β = 1 + chw
−p
2 ≥ 1, we get

(
a3
b

− 1

m− 1
)

∫
Bo(R)

β2wp+bη2 ≤ (
a3
b

− 1

m− 1
)

∫
Bo(R)

wp+bη2,

which yields∫
Bo(R)

α

4
wp+b−3η2|∇w|2 + (

1

m− 1
− a2

b
− a3

b
)

∫
Bo(R)

wp+bη2

+

∫
Bo(R)

a1
b

∫
Bo(R)

wp+b−1|∇∇η|2 ≤
∫
Bo(R)

(m− 1)wp+b−1Kη2.

(2.5)

For the first term on the LHS of (2.5), we use

|∇(w
p+b−1

2 η)|2 ≤ (b+ p− 1)2

2
wb+p−3|∇w|2η2 + 2wb+p−1|∇η|2.

Substituting it into the above inequality, we have∫
Bo(R)

|∇(w
p+b−1

2 η)|2 + bd1

∫
Bo(R)

wp+bη2

≤ a4

∫
Bo(R)

wp+b−1|∇η|2 +Kbd2

∫
Bo(R)

(m− 1)wp+b−1η2.

In order to prove the main theorem, we need the following two lemmas.

Lemma 2.2. Let (M, g, dμ) be an n-dimensional complete noncompact smooth met-
ric measure space. If Ricmf ≥ −(m − 1)K for some nonnegative constant K and
m > n ≥ 2, then there exists a constant C, depending on m, such that for all
Bo(R) ⊂ M we have for φ ∈ C∞

0 (Bo(R)),∫
Bo(R)

(|φ| 2m
m−2 )

m−2
m ≤ eC(1+

√
KR)V − 2

mR2

∫
Bo(R)

(|∇φ|2 +R−2φ2)dμ,

where V means weighted volume of Bo(R).
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Remark 2.3. The proof is analogous to that of Lemma 2.5 in [16].

Lemma 2.4. For b0 > 0 large enough and R > 0, there exists d3 = d3(m, p) > 0
such that

‖w‖L(b0+p−1) m
m−2 (Bo(

3
4R)) ≤ d3b

b0+p
b0+p−1

0 V
m−2

m(b0+p−1)R−2.

Proof. From Lemma 2.1, we have

(

∫
Bo(R)

w(p+b−1) m
m−2 η

2m
m−2 )

m−2
m

≤ eC(1+
√
KR)V − 2

m

(
R2

∫
Bo(R)

(|∇(w
b+p−1

2 η)|2 +
∫
Bo(R)

wb+p−1η2
)

≤ ec2b0V − 2
m

(
a4

∫
Bo(R)

wp+b−1|∇η|2 +Kbd2

∫
Bo(R)

(m− 1)wp+b−1η2

− bd1

∫
Bo(R)

wp+bη2 +

∫
Bo(R)

wb+p−1η2
)
,

where b0 = c1(m, p)(1+
√
KR) with c1 large enough to make b0 satisfy (2.4). Then

we have

( ∫
Bo(R)

w(p+b−1) m
m−2 η

2m
m−2

)m−2
m + bd1e

c2b0V − 2
m

∫
Bo(R)

wp+bη2

≤ a4R
2ec2b0V − 2

m

∫
Bo(R)

wp+b−1|∇η|2

+Kbd2R
2ec2b0V − 2

m

∫
Bo(R)

(m− 1)wp+b−1η2 + ec2b0V − 2
m

∫
Bo(R)

wb+p−1η2

≤ a4R
2ec2b0V − 2

m

∫
Bo(R)

wp+b−1|∇η|2 + a5b
2
0be

c2b0V − 2
m

∫
Bo(R)

wb+p−1η2.

(2.6)

We note that a5b
2
0b < 1

2bd1R
2wp+b when w > a6b

2
0R

2. Thus in the evaluation
of the second term on the right hand side of inequality (2.6), we decompose ω
into subregions: one over the places w > a6b

2
0R

2 and the second region being the
complement of the first region. With this decomposition we have

a5b
2
0be

c2b0V − 2
m

∫
Bo(R)

wb+p−1η2

≤ 1

2
bd1e

c2b0V − 2
m

∫
Bo(R)

wp+bη2 + a5b
2
0be

c2b0V 1− 2
m (

a6b
2
0

R2
)b+p−1

≤ 1

2
bd1e

c2b0V − 2
m

∫
Bo(R)

wp+bη2 + ab07 b30V
1− 2

m (
b0
R
)2b+2p−2.
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Let η1 ∈ C∞
0 (Ω) satisfy 0 ≤ η1 ≤ 1, η1 ≡ 1 in Bo(

3
4R), |∇η1| ≤ ˜C

R , and let

η = ηp+b
1 . The first term on the right hand side of (2.6) satisfies

a4R
2ec2b0

∫
Bo(R)

wp+b−1|∇η|2 ≤ a8b
2

∫
Bo(R)

wp+b−1η
2(b+p−1)

b+p

≤ a8b
2(

∫
Bo(R)

wp+bη2)
2(b+p−1)

b+p V
1

b+p

≤ 1

2
bd1R

2

∫
Bo(R)

wp+bη2 + bb+pdp+b−1
1 R−2(p+b−1)V.

Hence

(

∫
Bo(R)

w(p+b−1) m
m−2 η

2m
m−2 )

m−2
m ≤ d2b

b0+p
0 db+p−1

1 R−2(p+b−1).

Assuming that b0 = b and b1 = (p+ b0 − 1) m
m−2 , we can get

‖w‖L(b0+p−1) m
m−2 (Bo(

3
4R)) ≤ d3b

b0+p
b0+p−1

0 V
m−2

m(b0+p−1)R−2.

�

Now we begin to prove the main theorem. From (2.6), by ignoring the second
item on the left hand side, we have

(

∫
Bo(R)

w(p+b−1) m
m−2 η

2m
m−2 )

m−2
m ≤ a9

ec2b0

V
2
m

∫
Bo(R)

(b20bη
2 +R2|∇η|2)wp+b−1.

Set

bl+1 = bl
m− 2

m
, bl = b+ p− 1, ωl = B(o,

R

2
+

R

4l
), l = 1, 2 · · ·

and choose ηl ≡ 1 in ωl+1, ηl ≡ 0 in Bo(R) \ Ωl, |∇ηl| ≤ C4l

R .
We have

(

∫
Bo(R)

wbl+1)
1

bl+1 ≤ (a9
ec2b0

V
2
m

)
1
bl

( ∫
Bo(R)

(b20bη
2 +R2|∇η|2)wp+b−1

) 1
bl ,

which yields

‖w‖Lbl+1 (Ωl+1)
≤ (a10

ec2b0

V
2
m

)
1
bl

(
b20bl + 16l)

1
bl ‖w‖Lbl (Ωl)

.

Noting that
∑l=∞

l=1
1
bl

= m
2b1

,
∑∞

i=1
i
bi

= m2

4b1
, we obtain

‖w‖L∞(Bo(
R
2 )) ≤ (a10

ec2b0

V
2
m

)
M
2bl

(
17)

m
4bl ‖w‖

L
(b0+p−1) m

m−2 (Bo(
3R
4 ))

.

By Lemma 2.4, we have

‖w‖L∞(Bo(
R
2 )) ≤ a11b

(b0+p)
b0+p−1

0

1

R2
.

We can choose b0 large enough to make (b0+p)
b0+p−1 ≤ 3

2 , which yields

‖w‖L∞(Bo(
R
2 )) ≤ a11

(
c1(m, p)(1 +

√
KR)

) 3
2
1

R2
.

We have completed the proof of Theorem 1.1. For the proof of Corollary 1.3, we
leave it to the reader.
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