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Abstract. Let (R,m) be a local Noetherian ring with residue field k. While
much is known about the generating sets of reductions of ideals of R if k is
infinite, the case in which k is finite is less well understood. We investigate
the existence (or lack thereof) of proper reductions of an ideal of R and the
number of generators needed for a reduction in the case k is a finite field. When
R is one-dimensional, we give a formula for the smallest integer n for which
every ideal has an n-generated reduction. It follows that in a one-dimensional
local Noetherian ring every ideal has a principal reduction if and only if the
number of maximal ideals in the normalization of the reduced quotient of R is
at most |k|. In higher dimensions, we show that for any positive integer, there
exists an ideal of R that does not have an n-generated reduction and that if
n ≥ dimR this ideal can be chosen to be m-primary. In the case where R is
a two-dimensional regular local ring, we construct an example of an integrally
closed m-primary ideal that does not have a 2-generated reduction and thus
answer in the negative a question raised by Heinzer and Shannon.

1. Introduction

Let R be a (commutative) Noetherian ring, and let I be an ideal of R. A reduc-
tion of I is a subideal J of I such that In+1 = JIn for some n > 0; equivalently, J
is a subideal of I such that I = J , where denotes the integral closure of the corre-
sponding ideal in R. Northcott and Rees [11] proved that if R is a local Noetherian
ring with infinite residue field and Krull dimension d, then every ideal of R has a
d-generated reduction, that is, a reduction that can be generated by d elements.
This result and its generalizations involving analytic spread underlie many of the
applications of the theory of reductions to local algebra. For example, reductions
and the analytic spread have been instrumental in describing the asymptotic prop-
erties of an ideal I of R, the Cohen-Macaulay property of the Rees algebra R(I) of
I, and the blowup Proj R(I) of SpecR along the subscheme defined by I. However,
if the residue field of R is finite, then there may exist ideals of R that do not have
a d-generated reduction, and so the applicability of reductions in the case of local
rings with finite residue field is more limited.

In this article, we examine the extent to which the result of Northcott and
Rees involving d-generated reductions fails in the case of finite residue field. We
prove two main results, the first of which is devoted to one-dimensional rings and
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the second to rings of higher dimension. In the one-dimensional case we find the
optimal choice for replacing d in the result of Northcott and Rees with the smallest
possible positive integer, an integer that depends only on the size of the residue field
and the cardinality |Max(Rred)| of the set of maximal ideals in the normalization

Rred of the reduced quotient Rred = R/
√
0 of R.

Theorem A. Let R be a one-dimensional local Noetherian ring with finite residue
field k. The smallest positive integer n for which every ideal of R has an n-generated
reduction is

n = � −1 + log|k|
(
|k|+ (|k| − 1) · |Max(Rred)|

)
�.

For a one-dimensional local Noetherian ring R of multiplicity e, every ideal of R
can be generated by e elements [12, Theorem 1.1, p. 49]. Thus, the number n in
the theorem is at most e.

If R is a one-dimensional local Noetherian ring with infinite residue field, then
every ideal of R has a principal reduction. Using Theorem A, we extend this result
to one-dimensional local rings with residue field of any size (see Corollary 3.3).

Corollary. Let R be a one-dimensional local Noetherian ring with residue field k.
Every ideal of R has a principal reduction if and only if |Max(Rred)| ≤ |k|.

In particular, if R is a complete local Noetherian domain, then every ideal of R
has a principal reduction (Corollary 3.7). Thus in dimension one there are interest-
ing local Noetherian rings with finite residue field for which the result of Northcott
and Rees holds, i.e., every ideal of R has a reduction generated by dim(R)-many
elements. Moreover, in dimension one, even if there are ideals without a principal
reduction, we are at least guaranteed the existence of a bound on the number of
elements needed to generate a reduction.

Moving beyond dimension one, we use Theorem A to show (see Theorem 3.8)
that unlike in the case of infinite residue field, no such bound exists for a local
Noetherian ring with finite residue field and dimension at least two:

Theorem B. Let (R,m) be a local Noetherian ring of dimension d ≥ 2. If the
residue field of R is finite, then for each positive integer n there is an ideal of R
that is minimally generated by n elements and does not have a proper reduction. If
also n ≥ d, this ideal can be chosen to be m-primary.

Notation. Throughout the article, Q(R) denotes the total quotient ring of the ring
R, R is the integral closure of R in Q(R), and I is the integral closure of the ideal

I. We denote by Rred the reduced ring R/
√
0, where

√
0 is the nilradical of R. The

set of maximal ideals of R is denoted Max(R).

2. Preliminaries

In this section we develop a criterion for when every ideal in a local Noetherian
ring with finite residue field has an n-generated reduction. This criterion, Propo-
sition 2.4, will be used in the proofs of the main results in the next section. The
first lemma, which is a routine application of well-known properties of reductions,
concerns the transfer of reductions in a ring R to its reduced quotient Rred.

Lemma 2.1. Let R be a ring and let n be a positive integer. A finitely generated
ideal I of R has an n-generated reduction if and only if IRred has an n-generated
reduction.
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Proof. It is clear that if every ideal of R has n-generated reduction, then every
ideal of Rred has an n-generated reduction. Conversely, let I be an ideal of R and
suppose that J is an n-generated ideal of R such that JRred is a reduction of IRred.
Then J ⊆ I+

√
0. Write J = (x1, . . . , xn)R. For each i, there is yi ∈ I and zi ∈

√
0

such that xi = yi + zi. Thus J +
√
0 = (y1, . . . , yn)R+

√
0. Let K = (y1, . . . , yn)R.

Then K ⊆ I and KRred = JRred. Thus KRred is a reduction of IRred. We claim
that K is a reduction of I. Since KRred = IRred we have by [14, Proposition 1.1.5]

that KRred = IRred. By [14, Remark 1.1.3(5)], the nilradical
√
0 of R is contained

in every integrally closed ideal of R, so we conclude that K = I. Thus K is an
n-generated reduction of I. �

As discussed in the introduction, if (R,m) is a one-dimensional local Noetherian
ring with infinite residue field, then every ideal of R has a principal reduction.
Removing the restriction to infinite residue field, we can assert in general that
every ideal has a principal reduction if and only if every m-primary ideal has a
principal reduction, or more generally:

Proposition 2.2. Let (R,m) be a one-dimensional local Noetherian ring, and let
n be a positive integer. If every m-primary ideal of R has an n-generated reduction,
then every ideal of R has an n-generated reduction.

Proof. Let I be an ideal of R. By Lemma 2.1, it suffices to show that IRred has
an n-generated reduction, so we may assume without loss of generality that R is
a reduced ring and I is a proper ideal of R. Let A = (0 : I). Since R is local,
reduced and one-dimensional, the ideal I + A is m-primary. Indeed, suppose that
P is a minimal prime of R with I +(0 : I) ⊆ P . Then RP is a field as R is reduced
and hence IRP ⊆ PRP = 0. Then RP = (0RP : IRP ) ⊆ PRP , a contradiction.
Since I +A is m-primary, then by assumption I +A has an n-generated reduction
J , say (I + A)k+1 = J(I + A)k for some k > 0. Using the fact that IA = 0,
we have Ik+1 + Ak+1 = (I + A)k+1 = J(I + A)k = J(Ik + Ak) = JIk + JAk.
Write J = (x1 + a1, . . . , xn + an)R, where each xi ∈ I and each ai ∈ A. Then
Ik+1 + A = JIk + A = (x1, . . . , xn)I

k + A. Since (I ∩ A)2 = 0 and R is reduced,
we have I ∩ A = 0. Therefore, from Ik+1 + A = (x1, . . . , xn)I

k + A, we conclude
that Ik+1 = (x1, . . . , xn)I

k, which proves that I has n-generated reduction. �
The next lemma and proposition give criteria for when every ideal in a Noe-

therian ring R has an n-generated reduction. The stronger result, Proposition 2.4,
requires that R is also reduced, local, and one-dimensional. In light of Theo-
rem B, the one-dimensional assumption is necessary in the proposition. To state
Lemma 2.3, we recall that the arithmetic rank, ara(I), of a proper ideal I of a

Noetherian ring R is the least number n such that
√
I =

√
(x1, . . . , xn)R for some

x1, . . . , xn ∈ I.

Lemma 2.3. Let R be a Noetherian ring, let I be a proper ideal of R, and let n
be an integer such that n ≥ ara(I). If each (n + 1)-generated ideal J ⊆ I with√
J =

√
I has an n-generated reduction, then I has an n-generated reduction.

Proof. Let I be a proper ideal of R and let

F = {J : J ⊆ I,
√
J =

√
I and J is an n-generated ideal of R}.

Since R is a Noetherian ring and n ≥ ara(I), the set F is nonempty and contains

a maximal element J , where J is an n-generated ideal with J ⊆ I and
√
J =

√
I.
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Suppose that J � I. Then I 
⊆ J and we may choose y ∈ I \ J . Now J + yR is
an (n+ 1)-generated ideal, and hence by assumption there is an n-generated ideal
K of R such that K ⊆ J + yR and K = J + yR. But then J ⊆ K ∈ F and the
maximality of J in F forces J = J + yR, a contradiction to the fact that y 
∈ J .
Therefore, J = I and J is an n-generated reduction of I. �

Proposition 2.4. Let R be a reduced one-dimensional local Noetherian ring and
let n be a positive integer. Then the following are equivalent:

(1) Every ideal of R has an n-generated reduction.
(2) For all x1, . . . , xn+1 ∈ R for which (x1, . . . , xn+1)R = R, there is an n-

generated R-submodule of (x1, . . . , xn+1)R that does not survive in R.

Proof. In the proof we use the fact that every ideal of R is a principal ideal of R.
This can be seen as follows. By [6, Theorem 12.3, p. 66], the fact that R is a reduced
local Noetherian ring of dimension ≤ 2 implies R is a finite product of Noetherian
integrally closed domains. Since also dimR = dimR = 1, we have that R is a finite
product of Dedekind domains. The fact that R is semilocal implies these Dedekind
domains are principal ideal domains. As a finite product of principal ideal domains,
the ring R has the property that every ideal is a principal ideal.

First, suppose every ideal ofR has an n-generated reduction and let x1, . . . , xn+1∈
R such that (x1, . . . , xn+1)R = R. Let A = (x1, . . . , xn+1)R. Then there is a
nonzero divisor r ∈ R such that I := rA is an ideal of R. Since AR = R, we have
AQ(R) = Q(R), and hence A contains a nonzero divisor of R. Therefore, I = rA
also contains a nonzero divisor of R. By assumption, there is an n-generated re-
duction J of I. Let m > 0 be such that Im+1 = JIm. As we have established,
every ideal of R is a principal ideal. Thus IR is a principal ideal of R that is
necessarily generated by a nonzero divisor of R since I contains a nonzero divisor.
Since Im+1R = JImR and principal ideals generated by a nonzero divisor admit
no proper reductions, we obtain IR = JR. Therefore, R = AR = r−1IR = r−1JR.
Since J ⊆ I, we have r−1J ⊆ A, and hence r−1J is an n-generated R-submodule
of A that does not survive in R.

Conversely, suppose that for all x1, . . . , xn+1 ∈ R with (x1, . . . , xn+1)R = R,
there is an n-generated R-submodule of (x1, . . . , xn+1)R that does not survive in R.
To prove that every ideal ofR has an n-generated reduction, it suffices by Lemma 2.3
to show that every (n+1)-generated ideal of R has an n-generated reduction, since
ara(I) = 1 for any proper nonzero ideal I of R. Let a1, . . . , an+1 ∈ R and let
I = (a1, . . . , an+1)R. By Proposition 2.2, it suffices to consider the case in which I
is m-primary, where m is the maximal ideal of R.

Since every ideal of R is a principal ideal, we have IR = tR for some t ∈ R.
Since I is m-primary and R is reduced, I contains a nonzero divisor, so t is a
nonzero divisor in R. For each i ∈ {1, . . . , n + 1}, let xi = ait

−1. Then R =
t−1tR = t−1IR = (x1, . . . , xn+1)R. By assumption there exists an n-generated
R-submodule A of (x1, . . . , xn+1)R that does not survive in R. Since we have
(x1, . . . , xn+1)R = R = AR, it follows that

IR = t(x1, . . . , xn+1)R = tAR.

Moreover, tA ⊆ t(x1, . . . , xn+1)R = I. By [14, Proposition 1.6.1], the fact that
IR = tAR implies I = tA. Since tA ⊆ I, this proves that tA is an n-generated
reduction of I. �
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3. Main results

In this section we prove the main results of the paper. After proving the first
theorem, which deals with the one-dimensional case, we indicate how Theorem A
of the introduction follows. At the end of the section in Theorem 3.8, we prove
Theorem B of the introduction.

Theorem 3.1. Let R be a one-dimensional local Noetherian ring with finite residue
field k, and let n be a positive integer. Then every ideal of R has an n-generated
reduction if and only if

|Max(Rred)| ≤
|k|n+1 − |k|

|k| − 1
.

Proof. By Lemma 2.1, every ideal of R has an n-generated reduction if and only
if every ideal of Rred has an n-generated reduction. Thus it suffices to prove the
theorem in the case where R is a reduced ring. Throughout the proof, we let U
denote a set of |k|-many elements of R such that R/m = {u + m : u ∈ U}, where
m is the maximal ideal of R. We assume 0 ∈ U . Since R is a local ring, all the
nonzero elements of U are units in R. We denote the elements of the Cartesian
product Un by u = (u1, . . . , un). Let

J = {(i,u) ∈ {1, . . . , n+ 1} × Un : uj = 0 for all j ≥ i}.

Then

|J | = 1 + |k|+ |k|2 + · · ·+ |k|n =
|k|n+1 − 1

|k| − 1
.

Now we prove the theorem. Suppose first that

|Max(R)| > |k|n+1 − |k|
|k| − 1

.

We show there is an ideal of R that does not have an n-generated reduction. By
Proposition 2.4, it suffices to show that there are x1, . . . , xn+1 ∈ R such that R =
(x1, . . . , xn+1)R and every n-generated R-submodule of (x1, . . . , xn+1)R survives in
R.

By assumption,

|Max(R)| ≥ |k|n+1 − |k|
|k| − 1

+ 1 =
|k|n+1 − |k|+ |k| − 1

|k| − 1
= |J |.

Therefore, we may index a set {Mi,u : (i,u) ∈ J } of |J |-many maximal ideals of

R by J . Since the ideals Mi,u of R are maximal, the diagonal map

φ : R −→
∏

(i,u)∈J
R/Mi,u : x �→ (x+Mi,u)

is a surjective ring homomorphism. Thus we may choose x1, . . . , xn+1 ∈ R such
that for each (i,u) ∈ J and j = 1, . . . , n+ 1, we have

xj +Mi,u =

⎧⎪⎨
⎪⎩
0 +Mi,u if i < j,

1 +Mi,u if i = j,

uj +Mi,u if i > j.
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Let K = (x1, . . . , xn+1)R. We claim that R = (x1, . . . , xn+1)R and every n-
generated R-submodule of K survives in R. To show this we first prove that K/mK
has dimension n+ 1 as a k-vector space. Indeed, suppose i ∈ {1, . . . , n+ 1} and

xi +mK =
∑
j �=i

rjxj +mK

for some rj ∈ R. For each j 
= i, the choice of xj implies xj ∈ Mi,0 (with 0 =
(0, . . . , 0)). Since

xi −
∑
j �=i

rjxj ∈ mK ⊆ Mi,0,

we conclude that xi ∈ Mi,0, contrary to the fact that by the choice of xi, we have
xi +Mi,0 = 1 +Mi,0. This contradiction shows that K/mK has dimension n + 1
as a k-vector space. In particular, K cannot be generated as an R-module by fewer
than n+ 1 elements.

Let I be an n-generated R-submodule of K = (x1, . . . , xn+1)R. We claim that
I survives in R. Since I can be generated as an R-module by n elements, the
dimension of the k-vector space I/mI is at most n. Since K cannot be generated
by fewer than n+1 elements, by adding as many of the elements xi to I as needed
we can assume without loss of generality that I is an R-submodule of K such that
I can be generated by n but no fewer elements. In particular, the k-dimension of
I/mI is n. Then Nakayama’s Lemma implies that I is generated by n elements
y1, . . . , yn of the form

yj = uj,1x1 + uj,2x2 + · · ·+ uj,n+1xn+1, where uj,i ∈ U .

Since I/mI is a k-vector space of dimension n, the n× (n+ 1) matrix

(uj,i +m : j = 1, . . . , n, i = 1, . . . , n+ 1),

whose entries are in the field k, has rank n. Elementary row operations produce a
rank n matrix in reduced row echelon form such that for some i = 1, . . . , n + 1,
deleting the i-th column yields the n × n identity matrix. It follows from this
observation and Nakayama’s Lemma that there are u1, . . . , ui−1 ∈ U such that

I = ({xj − ujxi : j < i} ∪ {xi+1, . . . , xn+1})R.

Let u = (u1, . . . , ui−1, 0, . . . , 0) ∈ Un so that (i,u) ∈ J . We claim that I ⊆ Mi,u.
First, observe that xi+1, . . . , xn+1 ∈ Mi,u by the choice of these elements, so it
remains to show that for each j < i, we have xj−ujxi ∈ Mi,u. Let j < i and notice
that by the choice of xi, we have

xi +Mi,u = 1 +Mi,u and xj +Mi,u = uj +Mi,u.

Therefore,

xj − ujxi +Mi,u = uj − uj · 1 +Mi,u = 0 +Mi,u,

so that xj −ujxi ∈ Mi,u, proving the claim that I ⊆ Mi,u. We conclude that I sur-

vives inR. This shows that every n-generatedR-submodule ofK = (x1, . . . , xn+1)R
survives in R. Therefore, R has an ideal that does not have an n-generated reduc-
tion.

Conversely, suppose that

|Max(R)| ≤ |k|n+1 − |k|
|k| − 1

.
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To prove that every ideal of R has an n-generated reduction, it suffices by Propo-
sition 2.4 to show that for all x1, . . . , xn+1 ∈ R with (x1, . . . , xn+1)R = R, there is
an n-generated R-submodule I of (x1, . . . , xn+1)R such that IR = R.

Let x1, . . . , xn+1 ∈ R such that (x1, . . . , xn+1)R = R. For each (i,u) ∈ J with
u = (u1, . . . , un), consider the n-generated R-submodule of (x1, . . . , xn+1)R defined
by

Ii,u = (x1 − u1xi, x2 − u2xi, . . . , xi−1 − ui−1xi, xi+1, . . . , xn+1)R.

We claim first that if (s,u), (t,v) ∈ J and Is,u and It,v are contained in a common

maximal ideal of R, then s = t and u = v. Suppose M is a maximal ideal of R
with Is,u + It,v ⊆ M .

Suppose by way of contradiction that s 
= t. Without loss of generality, we can
assume that s < t. Then xt ∈ Is,u, so that since

x1 − v1xt, x2 − v2xt, . . . , xt−1 − vt−1xt ∈ It,v ⊆ M,

we have x1, x2, . . . , xt−1 ∈ M . Also, since s < t, we have xt, . . . , xn+1 ∈ Is,v ⊆ M .

But then R = (x1, . . . , xn+1)R ⊆ M , a contradiction that implies s = t.
Next we claim that u = v. Since s = t, we have

x1 − u1xt, . . . , xt−1 − ut−1xt ∈ Is,u ⊆ M.

Similarly, we have

x1 − v1xt, . . . , xt−1 − vt−1xt ∈ It,v ⊆ M.

Therefore, for each i < t, we have

xi − uixt − (xi − vixt) = (vi − ui)xt ∈ M.

An argument similar to the one in the preceding paragraph shows that xt 
∈ M ,
since otherwise every xj ∈ M , for j = 1, 2, . . . , n+1, a contradiction. Thus, for each
i < t we have vi − ui ∈ M ∩ R = m, where the last equality follows from the fact
that as a maximal ideal of an integral extension of R, M lies over m. Consequently,
for each i < t we have ui + m = vi + m, which, since ui, vi ∈ U , forces ui = vi.
Since this holds for all i < t, we conclude u = v. This proves that if Is,u and It,v
are contained in a common maximal ideal of R, then s = t and u = v.

Next, since no two distinct R-submodules of (x1, . . . , xn+1)R from the set {Is,u :

(s,u) ∈ J } are contained in the same maximal ideal of R, it follows that either
one of these R-submodules does not survive in R or there are at least |J |-many
maximal ideals of R. As established at the beginning of the proof,

|J | = |k|n+1 − 1

|k| − 1
,

so if every Is,u survives in R, we conclude that

|k|n+1 − 1

|k| − 1
≤ |Max(R)| ≤ |k|n+1 − |k|

|k| − 1
,

where the last inequality is given by assumption. This implies

|k|n+1 − 1 ≤ |k|n+1 − |k|,
which is impossible since |k| > 1. This contradiction implies some Is,u does not

survive in R. In particular, some n-generated R-submodule of (x1, . . . , xn+1)R does
not survive in R. Therefore, by Proposition 2.4 every ideal of R has an n-generated
reduction. �
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Theorem A now follows easily from Theorem 3.1: In the setting of the theorem,
we seek the smallest positive integer n such that

|Max(Rred)| ≤ |k|n+1 − |k|
|k| − 1

;

that is, we need the smallest positive integer n such that

|k|+ (|k| − 1) · |Max(Rred)| ≤ |k|n+1.

Equivalently,
log|k|

(
|k|+ (|k| − 1) · |Max(Rred)|

)
≤ n+ 1,

which yields the conclusion of Theorem A.

Remark 3.2. If R is a one-dimensional Noetherian local domain, then the number

of maximal ideals of R is the same as the number of minimal prime ideals in R̂
[7, Corollary 5]. Moreover, if R is a reduced local Noetherian ring with geometrically
regular formal fibers, then the number of maximal ideals of R is the same as the

number of minimal prime ideals of the completion R̂ of R [1, Theorem 6.5]. Thus
for excellent local Noetherian rings R, the bound in Theorem 3.1 can be restated
using the minimal primes of the completion of Rred rather than the maximal ideals
of the normalization of Rred.

Next we give a criterion for the existence of principal reductions in the one-
dimensional case.

Corollary 3.3. Let R be a one-dimensional local Noetherian ring with residue
field k. Then every ideal of R has a principal reduction if and only if

|Max(Rred)| ≤ |k|.

Proof. Apply Theorem 3.1 in the case n = 1. �

Corollary 3.4. Let R be a one-dimensional local Noetherian domain with residue
field k. If the multiplicity of R is at most |k|, then every ideal of R has a principal
reduction.

Proof. The completion of a one-dimensional local Noetherian domain of multiplicity
e has at most e minimal prime ideals (e.g., this follows from the multiplicity formula
given in [10, Theorem 14.7]). By Remark 3.2, |Max(R)| ≤ e ≤ |k|. Thus the
corollary is a consequence of Corollary 3.3. �

Remark 3.5. It follows from Corollary 3.4 that if a one-dimensional Noetherian local
domain R has multiplicity 2, then every ideal of R has a principal reduction. This
is known already for other reasons. In a one-dimensional local Cohen-Macaulay
ring of multiplicity e, every ideal can be generated by e elements [12, Theorem 1.1,
p. 49]. Since R has multiplicity 2, every ideal of R is 2-generated. In [13, Theorem
3.4], Sally and Vasconcelos prove that a ring in which every ideal is 2-generated
has the property that every m-primary ideal has a principal reduction of reduction
number at most 1; see also [9, Lemma 1.11].

Corollary 3.6. Let (R,m) be a one-dimensional Noetherian local domain whose
completion has at most two minimal prime ideals. Then every ideal of R has a
principal reduction.

Proof. Apply Remark 3.2 and Corollary 3.3. �
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Corollary 3.7. Every ideal of a one-dimensional complete local domain has a
principal reduction.

Proof. Apply Corollary 3.6. �
Next we use the one-dimensional case in Theorem 3.1 to show the absence of a

bound on the number of generators of reductions in higher dimensions.

Theorem 3.8. Let (R,m) be a local Noetherian ring of dimension d ≥ 2. If the
residue field of R is finite, then for each positive integer n there is an ideal of R
that is minimally generated by n elements and does not have a proper reduction. If
also n ≥ d, this ideal can be chosen to be m-primary.

Proof. Let n > 0 and let k denote the residue field of R. For the first assertion in
the theorem, it suffices to show that there exists an ideal of R that is generated by
n elements and has no (n− 1)-generated reduction; see, for example, [14, Proposi-
tion 8.3.3]. Since R is Noetherian and R has dimension d > 1, there are infinitely
many prime ideals of R of dimension one. Choose a positive integer t with

t >
|k|n − |k|
|k| − 1

.

Let P1, . . . , Pt be distinct dimension one prime ideals of R and let

A = R/(P1 ∩ · · · ∩ Pt).

Then A is a reduced one-dimensional local Noetherian ring with t minimal prime
ideals. As such, A is a direct product of t integrally closed domains [6, p. 64].
Consequently, A has at least t maximal ideals. By Lemma 2.3 and Theorem 3.1
there is an n-generated ideal I of A that does not have an (n − 1)-generated re-
duction. Let J be an n-generated ideal of R such that JA = I. If J has an
(n− 1)-generated reduction K ⊆ J , then there is m > 0 such that Jm+1 = JmK.
But then Im+1 = Jm+1A = JmKA = ImKA, so that KA is an (n− 1)-generated
reduction of I, contrary to the choice of I. We conclude that the n-generated ideal
J has no (n−1)-generated reduction. Hence J is minimally generated by n elements
and has no proper reduction.

It remains to prove the second assertion in the theorem. Suppose n ≥ d. If
n = d, then we may choose any n-generated m-primary ideal of R. By Krull’s
height theorem such an ideal must exist and cannot have an (n − 1)-generated
reduction since such a reduction would be an m-primary ideal generated by d − 1
elements. Thus, if n = d, the proof is complete.

Assume n > d. With I as above, choose J to be an m-primary ideal of R with
P1∩ · · ·∩Pt ⊆ J and JA = I. Since J is m-primary, Krull’s height theorem implies
that the arithmetic rank of J is d. Therefore, since n− 1 ≥ d, Lemma 2.3 implies
that there is an n-generated ideal J ′ ⊆ J such that

√
J ′ = m and J ′ does not have

an (n − 1)-generated reduction. This shows that J ′ is an n-generated m-primary
ideal with no (n − 1)-generated reduction, so we conclude that J ′ is minimally
generated by n elements and J ′ has no proper reduction. �
Remark 3.9. In [4, Example 2.3] an example is given of a two-dimensional Cohen-
Macaulay local ring R such that R has finite residue field and the maximal ideal m
of R fails to have a 2-generated reduction. In [5, Example 5.4], Abhyankar showed
that certain canonically defined m-primary ideals of a two-dimensional regular local
ring (R,m) have 2-generated reductions. This motivates the question of Heinzer and
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Shannon [5, Question 5.6] of whether every integrally closed m-primary ideal of a
two-dimensional regular local ring (R,m) with finite residue field has a 2-generated
reduction. Theorem 3.8 guarantees the existence of m-primary ideals without 2-
generated reductions, but the ideals produced in the proof need not be integrally
closed. In the next section we give an example that answers this question in the
negative; see Example 4.8.

4. Examples

In this section we give several examples to illustrate some of the ideas in Section 3.
In the first example, we show that in order for each ideal of a one-dimensional local
Noetherian domain to have a principal reduction, it is not sufficient that every
integrally closed ideal has a principal reduction.

Example 4.1. For each integer n ≥ 1, there exists a one-dimensional local Noe-
therian domain R such that every integrally closed ideal has a principal reduction,
yet R has an ideal that is minimally generated by n elements and does not have a
proper reduction.

Let n ≥ 1. If n = 1, then any one-dimensional local Noetherian domain suffices
as an example, since a nonzero principal ideal does not have a proper reduction.
Suppose n > 1. Choose 2n − 1 maximal ideals M1, . . . ,M2n−1 of the ring Z2[x],
and let S = Z2[x] \ (M1 ∪ · · · ∪M2n−1). Let J denote the Jacobson radical of the
localization Z2[x]S of Z2[x] at the multiplicatively closed set S, and let R = Z2+J .
Then R is a one-dimensional local Noetherian domain with maximal ideal J and
normalization R = Z2[x]S ; see, for example, [2, Lemma 1.1.4 and Proposition 1.1.7].
Thus R is a PID with |Max(R)| = 2n − 1. Observe that (J :Q(R) J) = R, and

thus since R is a PID, the blow up of the maximal ideal J of R in the sense of
Lipman [9, p. 651] is R. This ring has the property that each localization at a
maximal ideal has its embedding dimension (which is one) equal to its multiplicity.
Therefore, by [9, Theorem 2.2], every integrally closed ideal of R has a principal
reduction of reduction number at most 1. However, since the residue field k of R
has two elements and

|Max(R)| = |k|n − 1 >
|k|n − |k|
|k| − 1

,

Lemma 2.3 and Theorem 3.1 imply that R has an ideal that is minimally generated
by n elements and does not have an (n−1)-generated reduction. By [14, Proposition
8.3.3], this ideal does not have a proper reduction.

Corollary 3.4 implies that the maximal ideal of a one-dimensional local Noe-
therian domain of multiplicity 2 has a principal reduction. The next example,
which appears in [14, Example 8.3.2], shows that there exists a one-dimensional
local Cohen-Macaulay ring of multiplicity 3 whose maximal ideal does not have a
principal reduction.

Example 4.2 (See [14, Example 8.3.2]). Let R be the ring given by

R =
Z2[[x, y]]

(xy(x+ y))
.

The multiplicity of R is 3. Let m denote the maximal ideal of R, and let x′, y′ denote
the images of x and y in R, respectively. Notice that Min(R) = {(x′), (y′), (x′+y′)}
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and by Remark 3.2 and Corollary 3.3 we are guaranteed that there exists an ideal
that does not have any principal reductions. We claim that m is such an ideal.
Indeed, suppose that m has a principal reduction J = (f). Write f = r1x

′ + r2y
′

for some r1, r2 ∈ R. Since R = Z2 + m, there are a1, a2 ∈ Z2 such that for each
i, ri − ai ∈ m. Let f ′ = a1x

′ + a2y
′, and let J ′ = (f ′). Then J ⊆ J ′ + mI ⊆ I

and thus J ′ = I by [14, Lemma 8.1.8]. In this way, we may assume that any
principal reduction of m is generated by an element of the form f = a1x

′ + a2y
′,

with a1, a2 ∈ Z2. Thus, the only possible generators for principal reductions of m
are x′, y′, x′ + y′, but each of these is in a minimal prime ideal of R. However, any
reduction of m will be an m-primary ideal, and thus m has no principal reductions.

Although the ring R in Example 4.2 is not a domain, it can be used to produce
similar examples that are domains. We recall a theorem of Lech [8, Theorem 1]:
A complete local Noetherian ring R with maximal ideal m is the completion of a
local Noetherian domain if and only if (i) m = 0 or m 
∈ Ass(R), and (ii) no nonzero
integer of R is a zero divisor.

Example 4.3. A one-dimensional local Noetherian domain whose maximal ideal
does not have a principal reduction.

Let R be as in Example 4.2. Since R is Cohen-Macaulay, m 
∈Ass(R), and
since the only nonzero integer of R is 1, it follows from the theorem of Lech that
there exists a local Noetherian domain A with completion R. As in the preceding
example, the maximal ideal m of R does not have a principal reduction. Since the
maximal ideal of R is extended from the maximal ideal of A, it follows that the
maximal ideal of A does not have a principal reduction. Moreover, since R is a
complete intersection of multiplicity 3, so is A.

The following example was suggested to us by Bill Heinzer.

Example 4.4. Let R = Z2[[x, y, z]]/(z
2 − xy, xy(x+ y)(x+ y+ z)). One can show

that Min(R) = {(x, z), (y, z), (x+z, y+z), (x+y+z)}. Every linear form belongs to
some minimal prime of R and hence there is no principal reduction of the maximal
ideal m = (x, y, z). On the other hand, the number of minimal primes is 4 and
thus the number of maximal ideals of Rred is 4 by Remark 3.2. Since also |k| < 4,
Corollary 3.3 and Remark 3.2 imply that there exists an ideal of R that does not
have a principal reduction. In this case, m = (x, y, z)R is such an ideal.

The next example was suggested by Bernd Ulrich.

Example 4.5. Let R = Z2[[x, y, z]]/(z
2 − xy, xy(x + y)). One can show that

Min(R) = {(x, z), (y, z), (x + z, y + z)}. It is straightforward to show that J1 =
(x+ y+ z) is the only principal reduction of m = (x, y, z). The number of minimal
primes is 3 and even though |k| < 3 it is the case that m has a principal reduction.
By Remark 3.2 and Corollary 3.3 there must exist a different ideal of R that does
not have a principal reduction. One can verify that J2 = (x, y) is such an ideal.
Moreover, J2 is another proper reduction of m and there is no principal reduction
contained in J2. Hence there are minimal reductions ofm having minimal generating
sets of different sizes.

All the examples in this section have been devoted to the one-dimensional case.
In the next example, we illustrate the failure of 2-generated reductions for the
maximal ideal of a two-dimensional ring. As mentioned in Remark 3.9, Heinzer,
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Ratliff, and Rush [4, Example 2.3] have given for each finite field F an example of a
two-dimensional Cohen-Macaulay local ring R such that R has residue field F , the
associated graded ring of m is Cohen-Macaulay, and the maximal ideal m of R fails
to have a 2-generated reduction. For the case F = Z2, we give a simple example of
this phenomenon that has the same properties.

Example 4.6. Let R = Z2[[x, y, z]]/(xy(x + y)(x + y + z)). Then R is a two-
dimensional Cohen-Macaulay ring and the associated graded ring of m, grm(R) =
∞⊕
i=0

mi/mi+1, is Cohen-Macaulay. We claim that m = (x, y, z)R does not have a

2-generated reduction. Indeed, as in Example 4.2, if m has a 2-generated reduction,
then one can assume that the two generators of the reduction are linear forms.
Since the residue field is Z2 there are only seven linear forms in x, y, and z. It is
straightforward to check that any ideal in R generated by any two linear forms has
height 1 and therefore cannot be a reduction of m.

In Remark 3.9 we mentioned a question raised by Heinzer and Shannon. In
[5] they ask if every integrally closed, m-primary ideal of a two-dimensional regular
ring (R,m) with finite residue field has a 2-generated reduction. While Theorem 3.8
guarantees the existence of m-primary ideals without 2-generated reductions, it
asserts nothing about whether there are such examples that are integrally closed.
However, following the proof of Theorem 3.8, we can use similar ideas to produce
such an example. To this end, we first construct in Example 4.7 an explicit example
of a 3-generated ideal I in a two-dimensional regular local ring such that I has no
2-generated reductions and is not integrally closed.

Example 4.7. Let R = Z2[x, y](x,y) be a regular local ring with m = (x, y) the
unique maximal ideal of R. The algorithm in the proof of Theorem 3.8 produces
the following m-primary ideal of R that does not have any 2-generated reductions:

I = (x2y + xy2, xy5 + xy4 + xy3 + x3, y8 + xy3 + x3 + xy2).

This is an m-primary ideal. If there is a 2-generated reduction J of I, then we may
assume that J is generated by two Z2-linear combinations of the 3 generators of
I. Using Macaulay 2 [3] we can verify that none of these possible combinations
produce a reduction of I. Therefore, I is an m-primary ideal with no 2-generated
reductions. Moreover, using Macaulay 2 again we find the integral closure of I to
be I = (I, x3 + xy2) and thus I is not integrally closed.

Next we use Example 4.7 to construct an integrally closed, m-primary ideal in a
regular local ring (R,m) that does not have 2-generated reductions. This answers
the question of Heinzer and Shannon [5, Question 5.6] discussed in Remark 3.9 in
the negative.

Example 4.8. Let R = Z2[x, y](x,y) be a regular local ring with m = (x, y) the

unique maximal ideal of R. Let I be as in Example 4.7. Recall that I = (I, x3+xy2).
Since I is m-primary, so is I. We claim that I does not have 2-generated reductions.
As in Example 4.7, we may assume any reduction of I is generated by Z2-linear
combinations of the 4 generators of I. Using Macaulay 2 [3] we verify that none of
these linear combinations produce a 2-generated reduction of I. Therefore, I is an
integrally closed m-primary ideal with no 2-generated reductions.
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