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Abstract. In this paper, we obtain sufficient and necessary conditions for big
truncated Hankel operators on model spaces to be zero, or of finite rank or
compact. Our main tools are the properties of Hardy Hankel operators and
function algebras.

1. Introduction

Let D be the open unit disk in the complex plane, and let L2 denote the space
of square integrable functions on the unit circle T with respect to the Lebesgue
measure. The Hardy space H2 is the subspace of L2 consisting of all analytic
functions on D. The classical Hankel operators on the Hardy space H2 are the
compositions of the orthogonal projection on the orthogonal complement of H2 in
L2 and the multiplication operators defined by (2.1). The Hardy–Hankel operators
were studied by many authors (see, e.g., [1,24]). Most results about these operators
can be found in Peller’s book [20]. Indeed, the Hardy–Hankel operator is of finite
rank if and only if the conjugate part of its symbol is a rational function and it is
compact if and only if the symbol belongs to the Sarason algebraH∞+C [22], where
H∞ denotes the algebra of all bounded analytic functions on D and C denotes the
collection of all continuous functions on T.

On the Bergman space or multidimensional Hardy space, the orthogonal com-
plement of them is much larger than the complex conjugate of these spaces. Based
on this fact, one can define big Hankel operators (projecting to the orthogonal com-
plement) and little Hankel operators (projecting to the complex conjugate). The
properties of big and little Hankel operators on the Bergman space are different
[26]. For example, there is no nonzero big Hankel operator with conjugate analytic
symbol in the trace class, while lots of little Hankel operators with this kind of
symbol can be found to be in the trace class. More results on big Hankel operators
and little Hankel operators on the Bergman space are contained in [19]. The big
and little Hankel operators on the multidimensional Hardy space were studied by
M. Cotlar and C. Sadosky [6], S. Ferguson and C. Sadosky [8], M. Lacey [16], M.
Lacey and E. Terwilleger [17], and many others.
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A function θ ∈ H∞ is an inner function if its radial limits are of modulus one
almost everywhere on T. For a given nonconstant inner function θ, the model space
K2

θ [10, 19, 21] is defined by

K2
θ = H2 � θH2,

which is the orthogonal complement θH2 in H2. Let Pθ denote the orthogonal
projection from L2 onto the model space K2

θ . For ϕ ∈ L2, V. Bessonov [2] defined
Γϕ, the truncated Hankel operator with symbol ϕ, as

Γϕf = Pθ(ϕf), f ∈ K2
θ ∩ L∞,

where Pθ denotes the projection from L2 onto zK2
θ , the complex conjugate of zK2

θ .
This will be called the little truncated Hankel operator to be adapted to the ter-
minology on the Bergman space or multidimensional Hardy space. V. Bessonov
showed that Γϕ is zero if and only if ϕ ∈ H2 + θ2H2 and Γϕ is compact if and only

if ϕ ∈ C + θ2H2 +H2. Some results about the finite rank and compact little trun-
cated Hankel operators are contained in [3,18] because of the relationship between
little truncated Hankel operators and truncated Toeplitz operators (Lemma 3.3 in
[2]).

Recently, C. Gu [11] defined another kind of truncated Hankel operator as the
compression of the Hardy–Hankel operators to the model space K2

θ and proved a
number of algebraic properties of them. For ϕ ∈ L2, C. Gu defined the truncated
Hankel operator Bϕ with symbol ϕ by

Bϕf = PθJ(I − P )(ϕ)f, f ∈ K2
θ ∩ L∞,

where J denotes the unitary operator on L2 defined by Jh(z) = zh(z). C. Gu
proved that Bϕ = 0 if and only if

ϕ(z) = θ(z)θ(z)h(z) + g(z), where h, g ∈ H2.

D. Kang and H. Kim [15] obtained a sufficient and necessary condition for the
product of two such truncated Hankel operators to become a truncated Toeplitz
operator when the inner function has a certain symmetric property.

Naturally, one can define the truncated Hankel operator to be the composition
of the orthogonal projection on the orthogonal complement of K2

θ in L2 and the
multiplication operators restricted to the model space K2

θ . We will call these oper-
ators the big truncated Hankel operators. Precisely, for ϕ ∈ L2 we define the big
truncated Hankel operator Hθ

ϕ with symbol ϕ on K2
θ ∩ L∞ by

(1.1) Hθ
ϕf = (I − Pθ)(ϕf).

Since K2
θ ∩ L∞ is dense in K2

θ , the big truncated Hankel operator Hθ
ϕ is densely

defined on K2
θ . Clearly, the operator Hθ

ϕ is bounded if ϕ ∈ L∞. It is easy to
observe that the range of the little truncated Hankel operators defined by Bessonov
is contained in θH2 ⊕ zH2, the range of the big truncated Hankel operators.

A natural question is to characterize the zero, finite rank, and compact big trun-
cated Hankel operators on model spaces. In this paper we get a block decomposition
for the big truncated Hankel operators in terms of Hardy Hankel operators to study
this question (see equation (2.6)). Interestingly, the characterizations are different
from the case of little truncated Hankel operators. Unlike the result on zero lit-
tle truncated Hankel operators, there are only trivial zero big truncated Hankel
operators.
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Theorem 1.1. For ϕ ∈ L∞, Hθ
ϕ = 0 if and only if ϕ is a constant.

We characterize the finite rank and compact big truncated Hankel operators
which are also different from the little truncated Hankel operators.

Theorem 1.2. For ϕ ∈ L∞, Hθ
ϕ is of finite rank if and only if either θ is a finite

Blaschke product or ϕ = q1 + q2, where q1, q2 are rational functions with poles
outside of the closure of the unit disk.

The characterization of compact big truncated Hankel operators needs the notion
of support sets which will be defined in Section 3. Using the block decomposition
of the big truncated Hankel operator and Axler–Chang–Sarason–Volberg’s theorem
(see Section 3), we get the following theorem to characterize compact big truncated
Hankel operators.

Theorem 1.3. For ϕ ∈ L∞, Hθ
ϕ is compact if and only if for each support set Sm,

either θ|Sm
or ϕ|Sm

is a constant.

This paper is organized as follows. In Section 2, we will give some preliminaries
including the block decomposition of the big truncated Hankel operators on model
space in terms of Hardy Hankel operators. In Section 3, we will present the proof
for these theorems and a corollary of Theorem 1.3.

2. Preliminaries

Let P denote the orthogonal projection from L2 onto the Hardy space H2. For
ϕ ∈ L∞, the multiplication operator Mϕ, the Hardy–Toeplitz operator Tϕ, and the
Hardy–Hankel operator Hϕ are defined by

(2.1) Mϕf = ϕf, Tϕf = P (ϕf), Hϕf = (I − P )(ϕf), f ∈ H2.

For ϕ, φ ∈ L∞, a useful relation between the Hardy–Toeplitz operator and the
Hardy–Hankel operator is given by

(2.2) Tϕφ = TϕTφ +H∗
ϕHφ.

The following interesting lemma is the key to this paper. Actually, a big trun-
cated Hankel operator can be written as the sum of two operators whose ranges are
orthogonal; see formula (2.6). One part is the Hardy–Hankel operator restricted to
the model space K2

θ , and the other is the composition of the orthogonal projection
from L2 onto θH2 and the Hardy–Toeplitz operator restricted to the model space
K2

θ .

Lemma 2.1. For ϕ ∈ L∞ and f ∈ K2
θ , we have

Hθ
ϕf = HϕH

∗
θ
Hθf +MθH

∗
ϕHθf.

Proof. It is well known that the orthogonal projection from L2 onto θH2 equals
MθPMθ. Since Kθ = H2 � θH2,

(2.3) Pθ = P −MθPMθ.

Since PMθ|H2 = Tθ,

(2.4) Pθ|H2 = I − TθTθ = H∗
θ
Hθ.

Combining (2.3) and the definition of Hθ
ϕ (see (1.1)) gives

Hθ
ϕf = (I − Pθ)(ϕf) = (I − P )Mϕf +MθPMθMϕf, f ∈ K2

θ .
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Thus the first component of Hθ
ϕ is the Hardy–Hankel operator restricted to the

model space K2
θ . By (2.4),

(I − P )Mϕf = (I − P )MϕPθf

= (I − P )MϕH
∗
θ
Hθf

= HϕH
∗
θ
Hθf.

For the second part of Hθ
ϕ, we observe that

MθPMθMϕ|K2
θ
= MθPTθϕ|K2

θ
,

which is the composition of the orthogonal projection from L2 into θH2 and the
Hardy–Toeplitz operator restricted to the model space K2

θ . We will show that it is
basically a Hankel-type operator. For any f in K2

θ and any g in H2,

〈θf, g〉 = 〈f, θg〉 = 0.

This immediately gives

(2.5) Tθf = P (θf) = 0

for f ∈ K2
θ . Combining (2.2) with (2.5) gives

MθPMθMϕf = MθTθϕf −MθTϕTθf

= Mθ(Tθϕ − TϕTθ)f

= MθH
∗
ϕHθf.

Therefore,
Hθ

ϕf = HϕH
∗
θ
Hθf +MθH

∗
ϕHθf.

�

As we know, the kernel of the Hardy–Hankel operator Hθ is exactly equal to

θH2. If we extend Hθ
ϕ on θH2 to be a zero operator, by Lemma 2.1 and above fact,

an interesting observation is that for ϕ ∈ L∞ the big truncated Hankel operator
Hθ

ϕ can be viewed as a block operator

(2.6) Hθ
ϕ =

[
HϕH

∗
θ
Hθ

MθH
∗
ϕHθ

]
: H2 → (K2

θ )
⊥ =

⎡
⎣ zH2

⊕
θH2

⎤
⎦ .

Lemma 2.2. For ϕ ∈ L∞, the big truncated Hankel operator Hθ
ϕ is zero (resp., of

finite rank, compact) if and only if H∗
θ
Hϕ and H∗

ϕHθ are zero (resp., of finite rank,

compact).

Proof. The above observation (2.6) shows that the big truncated Hankel operator
Hθ

ϕ is zero (resp., of finite rank, compact) if and only if the operators HϕH
∗
θ
Hθ and

MθH
∗
ϕHθ are both zero (resp., of finite rank, compact).

As in [25], define an antiunitary operator V on L2 by

(V h)(eiθ) = e−iθh(eiθ).

It was pointed out in [25] that

V −1HφV = H∗
φ.

Thus we have
V −1H∗

θ
HϕV = HθH

∗
ϕ = (HϕH

∗
θ
)∗.
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Since Pθ = H∗
θ
Hθ and P 2

θ = Pθ, we have

[HϕH
∗
θ
Hθ][HϕH

∗
θ
Hθ]

∗ = HϕH
∗
θ
HθH

∗
θ
HθH

∗
ϕ

= HϕPθPθH
∗
ϕ

= HϕPθH
∗
ϕ

= HϕH
∗
θ
HθH

∗
ϕ

= [HϕH
∗
θ
][HϕH

∗
θ
]∗

= [V −1H∗
θ
HϕV ][V −1H∗

θ
HϕV ]∗

= V −1[H∗
θ
Hϕ][H

∗
θ
Hϕ]

∗(V −1)∗.

Thus HϕH
∗
θ
Hθ is zero (of finite rank, compact) if and only if the operator H∗

θ
Hϕ

is zero (of finite rank, compact, respectively).
On the other hand, MθH

∗
ϕHθ is zero (of finite rank, compact) if and only if

MθMθH
∗
ϕHθ = H∗

ϕHθ

is zero (of finite rank, compact, respectively).
Therefore, Hθ

ϕ is zero (of finite rank and compact) if and only ifH∗
θ
Hϕ andH∗

ϕHθ

are zero (of finite rank, compact, respectively). This completes the proof. �

3. The characterizations of zero, finite rank, and compactness

3.1. Zero big truncated Hankel operators. In 1963, A. Brown and P. Halmos
[4, Theorem 8] showed that the product TϕTφ of two Hardy–Toeplitz operators is
a Hardy–Toeplitz operator if and only if either ϕ is co-analytic or φ is analytic and
under the condition we have TϕTφ = Tϕφ (see also [7]). Combining the Brown–
Halmos theorem and equation (2.2) gives the following lemma.

Lemma 3.1 ([4]). For ϕ, φ ∈ L∞, then H∗
ϕHφ = 0 if and only if either ϕ ∈ H∞

or φ ∈ H∞.

Theorem 1.1 is a consequence of the fact that the multiplier of the model space
is constant; see Crofoot [5]. Now we are going to present another proof of Theorem
1.1.

Proof of Theorem 1.1. By Lemma 2.2 and Lemma 3.1, Hθ
ϕ = 0 if and only if

H∗
θ
Hϕ = 0 and H∗

ϕHθ = 0 if and only if ϕ ∈ H∞ and ϕ ∈ H∞ if and only if
ϕ is a constant. �

3.2. Big truncated Hankel operators with finite rank. The following theorem
is the Kronecker theorem which gives a sufficient and necessary condition for a
Hardy–Hankel operator to be of finite rank (see Theorem 3.1 in [20]).

Lemma 3.2 ([20]). For ϕ ∈ L∞, Hϕ is of finite rank if and only if (I − P )ϕ is a
rational function.

Lemma 3.3 ([1]). For ϕ, φ ∈ L∞, H∗
ϕHφ is of finite rank if and only if either Hϕ

or Hφ is of finite rank.

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. By Lemmas 2.2, 3.2, and 3.3, Hθ
ϕ is of finite rank if and only

if H∗
θ
Hϕ and H∗

ϕHθ are both of finite rank if and only if either Hθ is of finite rank

or Hϕ and Hϕ are both of finite rank if and only if either θ is a finite Blaschke
product or ϕ = q1+ q2, where q1, q2 are rational functions with poles outside of the
closure of the unit disk. �

3.3. Compact big truncated Hankel operators. We will need to make exten-
sive use of the maximal ideal space of H∞. The Gelfand space (the space of nonzero
multiplicative linear functionals) of the commutative Banach algebra B will be de-
noted by M(B). Let m be in the maximal ideal space M(H∞). We can identify
m with a multiplicative linear functional on H∞. Moreover, the Gleason–Whitney
theorem [7] says that m extends uniquely to a bounded positive linear functional
lm on L∞. By the Riesz representation theorem, there is a measure dμm called
the representing measure for m with support Sm, which is a subset of the maximal
ideal space of L∞ such that

lm(f) =

∫
Sm

fdμm;

for more details, see page 181 in [13]. A subset of M(L∞) will be called a support
set if it is the (closed) support of the representing measure for a functional in
M(H∞+C). For more details on H∞ and L∞ and their maximal ideal spaces, see
[9].

S. Axler, S.-Y. Chang, D. Sarason [1], and A. Vol′berg [24] proved the following
remarkable result.

Lemma 3.4 ([1]). For ϕ, φ ∈ L∞, H∗
ϕHφ is compact if and only if for each support

set Sm, either ϕ|Sm
or φ|Sm

is in H∞|Sm
.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 2.2, we have that Hθ
ϕ is compact if and only if

H∗
θ
Hϕ and H∗

ϕHθ are compact. By Lemma 3.4, we have that Hθ
ϕ is compact if and

only if for each support set Sm, either θ|Sm
or ϕ|Sm

is in H∞|Sm
and either θ|Sm

or ϕ|Sm
is in H∞|Sm

. This is equivalent to the fact that for each support set Sm,
either θ|Sm

is in H∞|Sm
or ϕ|Sm

and ϕ|Sm
are in H∞|Sm

. Since a support set Sm

is an antisymmetric set of L∞ [14], we have that if ϕ|Sm
and ϕ|Sm

are in H∞|Sm
,

then ϕ|Sm
is a constant, and if θ|Sm

is in H∞|Sm
, then θ|Sm

is a constant. This
completes the proof. �

For ϕ ∈ L∞, Hartman [12] proved that Hϕ is compact if and only if ϕ ∈ H∞+C
and Sarason [23] proved that ϕ ∈ H∞ + C if and only if for each support set Sm,
ϕ|Sm

∈ H∞|Sm
. Thus φ is in QC if and only if for each support set Sm, φ|Sm

is

a constant where QC denotes (H∞ + C) ∩ (H∞ + C). Theorem 1.3 immediately
gives the following corollary.

Corollary 3.5. If ϕ ∈ QC, then Hθ
ϕ is compact.
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