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NONDEGENERACY OF HALF-HARMONIC MAPS
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Abstract. We prove that the standard half-harmonic map U : R → S1 de-
fined by

x →

⎛
⎝

x2−1
x2+1
−2x
x2+1

⎞
⎠

is nondegenerate in the sense that all bounded solutions of the linearized half-
harmonic map equation are linear combinations of three functions correspond-
ing to rigid motions (dilation, translation, and rotation) of U .

1. Introduction

Due to their importance in geometry and physics, the analysis of critical points
of conformal invariant Lagrangians has attracted much attention since the 1950s. A
typical example is the Dirichlet energy which is defined on two-dimensional domains
and whose critical points are harmonic maps. This definition can be generalized
to even-dimensional domains whose critical points are called polyharmonic maps.
In recent years, people have been very interested in the analog of Dirichlet energy
in odd-dimensional case; for example, [2], [3], [4], [5], [13], [14], and the references
therein. Among these works, a special case is the so-called half-harmonic maps
from R into S1 which are defined as critical points of the line energy

(1.1) L(u) = 1

2

∫
R

|(−ΔR)
1
4 u|2dx.

Note that the functional L is invariant under the trace of conformal maps keeping
invariant the half-space R2

+: the Möbius group. Half-harmonic maps have close
relations with harmonic maps with partially free boundary and minimal surfaces
with free boundary; see [12] and [13]. Computing the associated Euler–Lagrange
equation of (1.1), we obtain that if u : R → S1 is a half-harmonic map, then u
satisfies the following equation:

(1.2) (−ΔR)
1
2 u(x) =

(
1

2π

∫
R

|u(x)− u(y)|2
|x− y|2 dy

)
u(x) in R.

The following proposition was proved in [13].
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Proposition 1.1 ([13]). Let u ∈ Ḣ1/2(R, S1) be a nonconstant entire half-harmonic
map into S1, and let ue be its harmonic extension to R2

+. Then there exist d ∈ N,

ϑ ∈ R, {λk}dk=1 ⊂ (0,∞), and {ak}dk=1 ⊂ R such that ue(z) or its complex conjugate
equals

eiϑ
d∏

k=1

λk(z − ak)− i

λk(z − ak) + i
.

Furthermore,

E(u,R) = [u]2H1/2(R) =
1

2

∫
R2

+

|∇ue|2dz = πd.

This proposition shows that the map U : R → S1,

x →
(

x2−1
x2+1
−2x
x2+1

)
,

is a half-harmonic map corresponding to the case ϑ = 0, d = 1, λ1 = 1, and a1 = 0.
In this paper, we prove the nondegeneracy of U which is a crucial ingredient when
analyzing the singularity formation of half-harmonic map flow. Note that U is
invariant under translation, dilation, and rotation, i.e., for Q =

(
cosα − sinα
sinα cosα

)
∈

O(2), q ∈ R and λ ∈ R+, the function

QU

(
x− q

λ

)
=

(
cosα − sinα
sinα cosα

)
U

(
x− q

λ

)
still satisfies (1.2). Differentiating with α, q, and λ, respectively, and then setting
α = 0, q = 0, and λ = 1, we obtain that the following three functions:

(1.3) Z1(x) =

(
2x

x2+1

x2−1
x2+1

)
, Z2(x) =

( −4x
(x2+1)2

2(1−x2)
(x2+1)2

)
, Z3(x) =

⎛
⎝ −4x2

(x2+1)2

2x(1−x2)
(x2+1)2

⎞
⎠

satisfy the linearized equation at the solution U of (1.2) defined as

(−ΔR)
1
2 v(x) =

(
1

2π

∫
R

|U(x)− U(y)|2
|x− y|2 dy

)
v(x)

+

(
1

π

∫
R

(U(x)− U(y)) · (v(x)− v(y))

|x− y|2 dy

)
U(x) in R(1.4)

for v : R → TUS
1. Our main result is the following.

Theorem 1.1. The half-harmonic map U : R → S
1,

x →
(

x2−1
x2+1
−2x
x2+1

)
,

is nondegenerate in the sense that all bounded solutions of equation (1.4) are linear
combinations of Z1, Z2, and Z3 defined in (1.3).

In the case of harmonic maps from two-dimensional domains into S2, the non-
degeneracy of bubbles is a consequence of the computations in linear theory part
of [7]. Integro-differential equations have attracted substantial research in recent
years. The nondegeneracy of ground state solutions for the fractional nonlinear
Schrödinger equations has been proved by Frank and Lenzmann [10], Frank, Lenz-
mann, and Silvestre [11], Fall and Valdinoci [9], and the corresponding result in the
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case of the fractional Yamabe problem was obtained by Dávila, del Pino, and Sire
in [6].

2. Proof of Theorem 1.1

The rest of this paper is devoted to the proof of Theorem 1.1. For convenience,
we identify S1 with the complex unit circle. Since Z1, Z2, and Z3 are linearly
independent and belong to the space L∞(R)∩Ker(L0), we only need to prove that
the dimension of L∞(R) ∩Ker(L0) is 3. Here the operator L0 is defined as

L0(v) = (−ΔR)
1
2 v(x)−

(
1

2π

∫
R

|U(x)− U(y)|2
|x− y|2 dy

)
v(x)

−
(
1

π

∫
R

(U(x)− U(y)) · (v(x)− v(y))

|x− y|2 dy

)
U(x),

for v : R → TUS
1. Let us come back to equation (1.4); for v : R → TUS

1,

v(x) ·U(x) = 0 holds pointwisely. Using this fact and the definition of (−ΔR)
1
2 (see

[8]), we have

1

π

∫
R

(U(x)− U(y))

|x− y|2 dy · v(x) =
(
(−ΔR)

1
2U(x)

)
· v(x)

=

(
1

2π

∫
R

|U(x)− U(y)|2
|x− y|2 dy

)
U(x) · v(x) = 0.

Therefore

(−ΔR)
1
2 v(x) =

(
1

2π

∫
R

|U(x)− U(y)|2
|x− y|2 dy

)
v(x)

+

(
1

π

∫
R

(U(x)− U(y)) · (v(x)− v(y))

|x− y|2 dy

)
U(x)

=

(
1

2π

∫
R

|U(x)− U(y)|2
|x− y|2 dy

)
v(x)

+

(
1

π

∫
R

(U(x)− U(y))

|x− y|2 dy · v(x)
)
U(x)

+

(
1

π

∫
R

(v(x)− v(y))

|x− y|2 dy · U(x)

)
U(x)

=

(
1

2π

∫
R

|U(x)− U(y)|2
|x− y|2 dy

)
v(x)

+

(
1

π

∫
R

(v(x)− v(y))

|x− y|2 dy · U(x)

)
U(x)

=

(
1

2π

∫
R

|U(x)− U(y)|2
|x− y|2 dy

)
v(x)

+
(
(−ΔR)

1
2 v(x) · U(x)

)
U(x).

Therefore equation (1.4) becomes

(−ΔR)
1
2 v(x) =

(
1

2π

∫
R

|U(x)− U(y)|2
|x− y|2 dy

)
v(x) +

(
(−ΔR)

1
2 v(x) · U(x)

)
U(x)

=
2

x2 + 1
v(x) +

(
(−ΔR)

1
2 v(x) · U(x)

)
U(x).(2.1)
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Next, we lift equation (2.1) to S1 via the stereographic projection from R to
S1 \ {pole}:

(2.2) S(x) =

(
2x

x2+1

1−x2

x2+1

)
.

It is well known that the Jacobian of the stereographic projection is

J(x) =
2

x2 + 1
.

For a function ϕ : R → R, define ϕ̃ : S1 → R by

(2.3) ϕ(x) = J(x)ϕ̃(S(x)).

Then we have

[(−ΔS1)
1
2 ϕ̃](S(x)) =

1

π

∫
R

ϕ̃(S(x))− ϕ̃(S(y))

|S(x)− S(y)|2 dS(y)

=
1

π

∫
R

1+x2

2 ϕ(x)− 1+y2

2 ϕ(y)
4(x−y)2

(x2+1)(y2+1)

2

1 + y2
dy

=
1 + x2

4π

∫
R

(1 + x2)ϕ(x)− (1 + y2)ϕ(y)

(x− y)2
dy

=
1 + x2

2
(−ΔR)

1/2

[
x2 + 1

2
ϕ(x)

]

=
1 + x2

2
(−ΔR)

1/2 [ϕ̃(S(x))] .

Therefore,

(−ΔR)
1/2 [ϕ̃(S(x))] = J(x)[(−ΔS1)

1
2 ϕ̃](S(x)).

Denote v = (v1, v2) and let ṽ1, ṽ2 be the functions defined by (2.3), respectively.
Then the linearized equation (2.1) becomes{
J(x)(−ΔS1)

1
2 ṽ1=J(x)ṽ1+

x2−1
x2+1

x2−1
x2+1J(x)(−ΔS1)

1
2 ṽ1+

x2−1
x2+1

−2x
x2+1J(x)(−ΔS1)

1
2 ṽ2,

J(x)(−ΔS1)
1
2 ṽ2=J(x)ṽ2+

−2x
x2+1

x2−1
x2+1J(x)(−ΔS1)

1
2 ṽ1+

−2x
x2+1

−2x
x2+1J(x)(−ΔS1)

1
2 ṽ2.

Since J(x) > 0 and set U = (cos θ, sin θ), we get{
(−ΔS1)

1
2 ṽ1 = ṽ1 + cos2 θ(−ΔS1)

1
2 ṽ1 + cos θ sin θ(−ΔS1)

1
2 ṽ2,

(−ΔS1)
1
2 ṽ2 = ṽ2 + cos θ sin θ(−ΔS1)

1
2 ṽ1 + sin2 θ(−ΔS1)

1
2 ṽ2,

which is equivalent to{
(−ΔS1)

1
2 ṽ1 = 2ṽ1 + cos 2θ(−ΔS1)

1
2 ṽ1 + sin 2θ(−ΔS1)

1
2 ṽ2,

(−ΔS1)
1
2 ṽ2 = 2ṽ2 + sin 2θ(−ΔS1)

1
2 ṽ1 − cos 2θ(−ΔS1)

1
2 ṽ2.

Set w = ṽ1 + iṽ2, z = cos θ + i sin θ; then we have

(2.4) (−ΔS1)
1
2w = 2w + z2(−ΔS1)

1
2 w̄.

Here w̄ is the conjugate of w.
Since v ∈ L∞(R), w is also bounded, so we can expand w into the Fourier series

w =
∞∑

k=−∞
akz

k.
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Note that all the eigenvalues for (−ΔS1)
1
2 are λk = |k| = 0, 1, 2, . . . with k ∈ Z;

see, for example, [1]. Using (2.4), (−ΔS1)
1
2 zk = |k|zk, and (−ΔS1)

1
2 z̄k = |k|z̄k, we

obtain ⎧⎨
⎩

(−k − 2)ak = (2− k)ā2−k, if k < 0,
(k − 2)ak = (2− k)ā2−k, if 0 ≤ k ≤ 2,
ak = ā2−k, if k ≥ 3.

Furthermore, from the orthogonal condition v(x) ·U(x) = 0 (so (ṽ1, ṽ2) ·(cos θ, sin θ)
= 0), we have

ak = −ā2−k, k = · · · − 1, 0, 1, . . . .

Thus

ak = 0, if k < 0 or k ≥ 3

and

a0 = −ā2, a1 = −ā1

hold, which imply that

w = −ā2 + a1z + a2z
2 = a(iz) + b

[
i

2
(z − 1)2

]
+ c

(z2 − 1)

2
.

Here a, b, c are real numbers and satisfy the relations

i(a− b) = a1,
c

2
+

i

2
b = a2.

Also, it is easy to check that iz, i
2 (z − 1)2, and (z2−1)

2 are, respectively, Z1, Z2,
and Z3 under stereographic projection (2.2). By the one-to-one correspondence of
w and v, we know that the dimension of L∞(R)∩Ker(L0) is 3. This completes the
proof.

Remark 2.1. The above proof also shows that the half-harmonic map from S1 to
S1: z → −iz is nondegenerate.
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