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ASYMPTOTIC VARIANCE OF THE NUMBER OF REAL ROOTS

OF RANDOM POLYNOMIAL SYSTEMS

D. ARMENTANO, J-M. AZAÏS, F. DALMAO, AND J. R. LEÓN

(Communicated by Zhen-Qing Chen)

Abstract. We obtain the asymptotic variance, as the degree goes to infinity,
of the normalized number of real roots of a square Kostlan-Shub-Smale random
polynomial system of any size. Our main tools are the Kac-Rice formula for
the second factorial moment of the number of roots and a Hermite expansion
of this random variable.

1. Introduction

The study of the roots of random polynomials is among the most important and
popular topics in mathematics and in some areas of physics. For almost a century
a considerable amount of literature about this problem has emerged from fields
such as probability, geometry, algebraic geometry, algorithm complexity, quantum
physics, etc. In spite of its rich history it is still an extremely active field.

There are several reasons that lead one to consider random polynomials and
several ways to randomize them; see Bharucha-Reid and Sambandham [3].

The case of algebraic polynomials Pd(t) =
∑d

j=1 ajt
j with independent identi-

cally distributed coefficients was the first one to be extensively studied and was
completely understood during the 1970s. If a1 is centered, P(a1 = 0) = 0, and
E (|a1|2+δ) < ∞ for some δ > 0, then the asymptotic expectation and the asymp-
totic variance of the number of real roots of Pd, as the degree d tends to infinity, are
of order log(d), and, once normalized, the number of real roots converges in distri-
bution towards a centered Gaussian random variable. See the books by Farahmand
[7] and Bharucha-Reid and Sambandham [3] and the references therein for the whole
picture.

The case of systems of polynomial equations seems to be considerably harder
and has received in consequence much less attention. The results in this direction
are confined to the Shub-Smale model and some other invariant distributions. The
ensemble of Shub-Smale random polynomials was introduced in the early 1990s by
Kostlan [9]. Kostlan argues that this is the most natural distribution for a polyno-
mial system. The exact expectation was obtained in the early 1990’s by geometric
means; see Edelman and Kostlan [5] for the one-dimensional case and Shub and
Smale [18] for the multi-dimensional one. In 2004 and 2005 Azäıs and Wschebor
[2] and Wschebor [19] obtained by probabilistic methods the asymptotic variance
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as the number of equations and variables tends to infinity. Recently, Dalmao [4]
obtained the asymptotic variance and a CLT for the number of zeros as the degree d
goes to infinity in the case of one equation in one variable. Letendre in [13] studied
the asymptotic behavior of the volume of random real algebraic submanifolds. His
results include the finiteness of the limit variance, when the degree tends to infinity,
of the volume of the zero sets of Kostlan-Shub-Smale systems with strictly fewer
equations than variables. Some results for the expectation and variance of related
models are included in [2, 11, 12].

In the present paper we prove that as the degree goes to infinity, the asymptotic
variance of the normalized number of real roots of a Kostlan-Shub-Smale square
random system with m equations and m variables exists in (0,∞). We use Rice
Formulas [1] to show the finiteness of the limit variance and Hermite expansions as
in Kratz and León [10] to show that it is strictly positive. Furthermore, we strongly
exploit the invariance under isometries of the distribution of the polynomials.

The reader may wonder, in view of the results mentioned above, if the normalized
number of roots satisfies a CLT when the degree of the system tends to infinity.
The answer is affirmative if m = 1 [4], but for the time being we cannot give an
answer to this question for m > 1. The ingredients to prove a CLT for a nonlinear
functional of a Gaussian process are: a) to write a representation in the Itô-Wiener
chaos of the normalized functional, b) to demonstrate that each component verifies
a CLT (Fourth Moment Theorem [16], [17]), and if the functional has an expansion
involving infinitely many terms: c) to prove that the tail of the asymptotic variance
tends uniformly (w.r.t. d) to zero. In the present case we lack a proof of c). For
m = 1 the fact that the invariance by rotations is equivalent with the stationarity
allows us to build a proof similar to the one made for the number of crossings of a
stationary Gaussian process.

The rest of the paper is organized as follows. Section 2 sets the problem and
presents the main result. Section 3 deals with the proof.

2. Main result

Consider a square system P of m polynomial equations in m variables with
common degree d > 1. More precisely, let P = (P1, . . . , Pm) with

P�(t) =
∑
|j|≤d

a
(�)
j tj ,

where

(1) j = (j1, . . . , jm) ∈ N
m and |j| =

∑m
k=1 jk;

(2) a
(�)
j = a

(�)
j1...jm

∈ R, � = 1, . . . ,m, |j| ≤ d;

(3) t = (t1, . . . , tm) and tj =
∏m

k=1 t
jk
k .

We say that P has the Kostlan-Shub-Smale (KSS for short) distribution if the

coefficients a
(�)
j are independent centered normally distributed random variables

with variances

Var
(
a
(�)
j

)
=

(
d

j

)
=

d!

j1! . . . jm!(d− |j|)! .

We are interested in the number of real roots of P, which we denote by NP
d .

Shub and Smale [18] proved that E (NP
d ) = dm/2. Our main result is the following.
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Theorem 2.1. Let P be a KSS random polynomial system with m equations, m
variables, and degree d. Then, as d → ∞ we have

lim
d→∞

Var(NP
d )

dm/2
= V 2

∞,

where 0 < V 2
∞ < ∞.

2.1. Explicit expression of the variance. Using the method of Section 12.1.2
of [1] an explicit expression for the limit variance can be given.

For k = 1, . . . ,m let ξk, ηk be independent standard normal random vectors on
R

k. Let us define:

• σ̄2(t) = 1− t2 exp(−t2)
1−exp(−t2) ;

• ρ̄(t) = (1−t2−exp(−t2)) exp(−t2/2)
1−(1+t2) exp(−t2) ;

• mk,j = E
(
‖ξk‖j

)
= 2j/2 Γ((j+k)/2)

Γ(k/2) , where ‖ · ‖ is the Euclidean norm on

R
k;

• for k = 1, . . . ,m− 1, Mk(t) = E

[
‖ξk‖ ‖ηk + e−t2/2

(1−e−t2 )1/2
ξk‖
]
;

• for k = m, Mm(t) = E

[
‖ξm‖ ‖ηm + ρ̄(t)

(1−ρ̄2(t))1/2
ξm‖
]
.

Theorem 2.2. We have

V 2
∞ =

1

2
+

κmκm−1

2(2π)m
·
∫ ∞

0

tm−1

[
σ̄4(t)(1− ρ̄2(t))

1− e−t2

]1/2 [ m∏
k=1

Mk(t)−
m∏

k=1

m2
k,1

]
dt.

�

3. Proof

3.1. Preliminaries. It is customary and convenient to homogenize the polynomi-
als, that is, to add an auxiliary variable t0 and to multiply the monomial in P�

corresponding to the index j by t
d−|j|
0 . Let Y = (Y1, . . . , Ym) denote the resulting

vector of m homogeneous polynomials in m+1 real variables with common degree
d > 1. We have

Y�(t) =
∑
|j|=d

a
(�)
j tj , � = 1, . . . ,m,

where this time j = (j0, . . . , jm) ∈ N
m+1, |j| =

∑m
k=0 jk, a

(�)
j = a

(�)
j0...jm

∈ R,

t = (t0, . . . , tm) ∈ R
m+1, and tj =

∏m
k=0 t

jk
k .

Since Y is homogeneous, its roots consist of lines through 0 in R
m+1. Then, it

is easy to check that each root of P corresponds exactly to two (opposite) roots of
Y on the unit sphere Sm of Rm+1. Furthermore, one can prove that the subset of
homogeneous polynomials Y with roots lying in the hyperplane t0 = 0 has Lebesgue
measure zero. Then, denoting by NY

d the number of roots of Y on Sm, we have
NP

d = NY
d /2 almost surely.

From now on we work with the homogenized version Y. The standard multino-
mial formula shows that for all s, t ∈ R

m+1 we have

rd(s, t) := E (Y�(s)Y�(t)) = 〈s, t〉d ,
where 〈·, ·〉 is the usual inner product in R

m+1. As a consequence, we see that the
distribution of the system Y is invariant under the action of the orthogonal group
in R

m+1. For ease of notation we omit the dependence on d of Y.
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In the sequel we need to consider the derivative of Y�, � = 1, . . . ,m. Since the
parameter space is the sphere Sm, the derivative is taken in the sense of the sphere;
that is, the spherical derivative Y ′

� (t) of Y�(t) is the orthogonal projection of the
free gradient on the tangent space t⊥ of Sm at t. The k-th component of Y ′

� (t) at
a given basis of the tangent space is denoted by Y ′

�k(t).
The covariances between the derivatives and between the derivatives and the

process are obtained via routine computations from the covariance of Y�. In par-
ticular, the invariance under isometries is preserved after derivation, and for each
t ∈ Sm, Y(t) is independent from Y′(t) = (Y ′

1(t), . . . , Y
′
m(t)).

3.2. Finiteness of the limit variance. In this section we prove that

lim
d→∞

Var(NP
d )

dm/2
< ∞.

Recall that E (NP
d ) = dm/2. We write

(3.1) Var
(
NP

d

)
= Var

(
NY

d

2

)
=

1

4

[
E
(
NY

d

(
NY

d − 1
))

− E
2
(
NY

d

)]
+

dm/2

2
.

The quantity E (NY
d (NY

d −1)) is computed using the Rice formula [1, Theorem 6.3]
and a localization argument:

E (NY
d (NY

d − 1)) =

∫
(Sm)2

E [| detY′(s) detY′(t)| |Y(s) = Y(t) = 0]

· pY(s),Y(t)(0, 0)dsdt.

Here ds and dt are the m-geometric measure on Sm, but we will use in other parts
ds and dt for the Lebesgue measure.

The following lemma allows us to reduce this integral to a one-dimensional one.
The proof is a direct consequence of the co-area formula.

Lemma 3.1. Let H be a measurable function defined on R. Then, we have∫
(Sm)2

H(〈s, t〉) ds dt = κmκm−1

∫ π

0

sin(ψ)m−1H(cos(ψ)) dψ

=
κmκm−1√

d

∫ √
dπ

0

sin

(
z√
d

)m−1

H
(
cos

(
z√
d

))
dz,

where κm is the m-geometric measure of Sm. �
Let {e0, e1, . . . , em} be the canonical basis of Rm+1. Because of the invariance

of Y by isometries we can assume without loss of generality that

(3.2) s = e0, t = cos(ψ)e0 + sin(ψ)e1.

For s⊥ we choose as basis {e1, . . . , em} and {sin(ψ)e0−cos(ψ)e1, e2, . . . , em} for t⊥.

Finally, take ψ = z/
√
d and use Lemma 3.1. Hence,

d−m/2
E (NY

d (NY
d − 1))

=
κmκm−1

(2π)m
√
d

∫ √
dπ

0

sinm−1

(
z√
d

)
dm/2(

1− cos2d( z√
d
)
)m/2

E
(

z√
d

)
dz,

where E(z/
√
d) is the conditional expectation written for s, t as in (3.2).
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Now, we deal with the conditional expectation E(z/
√
d). We introduce the fol-

lowing notation:

A
(

z√
d

)
= −

√
d cosd−1

(
z√
d

)
sin

(
z√
d

)
;(3.3)

B
(

z√
d

)
= cosd

(
z√
d

)
− (d− 1) cosd−2

(
z√
d

)
sin2

(
z√
d

)
;

C
(

z√
d

)
= cosd

(
z√
d

)
;

D
(

z√
d

)
= cosd−1

(
z√
d

)
;

and, omitting the (z/
√
d):

σ2 = 1− A2

1− C2
, ρ =

B(1− C2)−A2C
1− C2 −A2

.

Thus, the variance-covariance matrix of the vector
(
Y�(s), Y�(t),

Y ′
� (s)√
d
,
Y ′
� (t)√
d

)
at the

given basis can be written in the form⎡
⎢⎣

A11 A12 A13

A�
12 Im A23

A�
13 A�

23 Im

⎤
⎥⎦ ,(3.4)

where Im is the m×m identity matrix,

(3.5) A11 =

[
1 C
C 1

]
, A12 =

[
0 0 · · · 0

−A 0 · · · 0

]
, A13 =

[
A 0 · · · 0
0 0 · · · 0

]
,

and A23 is the m×m diagonal matrix diag(B,D, . . . ,D).
Gaussian regression formulas (see [1, Proposition 1.2]) imply that the condi-

tional distribution of the vector
(Y ′

� (s)√
d
,
Y ′
� (t)√
d

)
(conditioned on Y(s) = Y(t) = 0) is

centered normal with variance-covariance matrix given by

(3.6)

[
B11 B12

B�
12 B22

]
,

with B11 = B22 = diag(σ2, 1, . . . , 1) and B12 = diag(σ2ρ,D, . . . ,D).
It is important to remark that if A = (A1A2 . . . Am) is a matrix with column

vectors Aj , it holds that det(A) = Qm(A1, A2, . . . , Am) for a certain polynomial

Qm of degree m from R
m2

to R. Using representation of Gaussian vectors from a
standard one we can write

E
(

z√
d

)
=

∫
(Rm2)2

φm2(x)φm2(y)

∣∣∣∣∣∣∣∣
Qm

⎛
⎜⎜⎝
⎛
⎜⎜⎝

σx11

x12

·
x1m

⎞
⎟⎟⎠ , . . . ,

⎛
⎜⎜⎝

σxm1

xm2

·
xmm

⎞
⎟⎟⎠
⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣
Qm

⎛
⎜⎜⎝
⎛
⎜⎜⎝

σ(ρx11 +
√
1− ρ2y11)

Dx12 +
√
1−D2y12
·

Dx1m +
√
1−D2y1m

⎞
⎟⎟⎠ , . . . ,

⎛
⎜⎜⎝

σ(ρxm1 +
√
1− ρ2ym1)

Dxm2 +
√
1−D2ym2

·
Dxmm +

√
1−D2ymm

⎞
⎟⎟⎠
⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
dxdy,
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where φm2 is the standard normal density in R
m2

. Because of the homogeneity of
the determinant we have

E
(

z√
d

)
= σ2

∫
(Rm2 )2

Qm(x)Qm(z)φm2(x)φm2(y)dxdy =: σ2G(ρ,D),

where z = diag(ρ,D, . . . ,D)x+ diag(
√
1− ρ2,

√
1−D2, . . . ,

√
1−D2)y.

Now, we return to the expression of the variance in (3.1). We have

(3.7) d−m/2Var
(
NP

d

)
=

1

4dm/2

[
E (NY

d (NY
d − 1))− (E (NY

d ))2
]
+

1

2

=
1

2
+

κmκm−1

4(2π)m

∫ √
dπ

0

sinm−1

(
z√
d

)
d(m−1)/2

×
[ σ2( z√

d
)

(1− cos2d( z√
d
))m/2

G
(
ρ
( z√

d

)
,D
( z√

d

))
−G(0, 0)

]
dz.

The proof of the convergence of this integral is done in several steps.
In the rest of this section C denotes an unimportant constant; its value can

change from one occurrence to another. It can depend on m, but recall that m is
fixed.

Step 1 (Bounds for G).

• G(ρ,D) =
∫
(Rm2 )2

Qm(x)Qm(z)φm2(x)φm2(y)dxdy;

• G(0, 0) =
∫
(Rm2 )2

Qm(x)Qm(y)φm2(x)φm2(y)dxdy;

• |
√
1− ρ2 − 1| ≤ C|ρ|; |

√
1−D2 − 1| ≤ C|D|;

• |Qm(x)| ≤ C(1 + ‖x‖∞)m;
• any partial derivative of Qm(w) is a polynomial of degree m− 1 and thus
it is bounded by C(1 + ‖w‖∞)m−1.

Applying these bounds to a point between y and z, we get

|Qm(z)−Qm(y)| ≤ C(1 + ‖y‖∞ + ‖z‖∞)m−1(|ρ|+ |D|)
≤ C(1 + ‖x‖∞ + ‖y‖∞)m−1(|ρ|+ |D|)

and

|Qm(x) ·Qm(z)−Qm(x) ·Qm(y)|
≤ C(1 + ‖x‖∞)m(1 + ‖x‖∞ + ‖y‖∞)m−1(|ρ|+ |D|).

The finiteness of all the moments of the supremum of Gaussian random variables
finally yields

|G(ρ,D)−G(0, 0)| ≤ C(|ρ|+ |D|).

Step 2 (Point-wise convergence). It is a direct consequence of the expansions of
sine and cosine functions. As d tends to infinity:

• A( z√
d
) → −z exp(−z2/2);

• B( z√
d
) → (1− z2) exp(−z2/2);

• C( z√
d
) and D( z√

d
) tend to exp(−z2/2);

• σ2( z√
d
) → 1−(1+z2) exp(−z2)

1−exp(−z2) = σ̄2(z);

• ρ( z√
d
) → (1−t2−exp(−t2)) exp(−t2/2)

1−(1+t2) exp(−t2) = ρ̄(z),
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being σ̄2 and ρ̄ as in Subsection 2.1. This, in view of the continuity of the function
G, implies the pointwise convergence of the integrand in (3.7).

Step 3 (Symmetrization). We haveA(π−z/
√
d) = (−1)d−1A(z/

√
d), B(π−z/

√
d) =

(−1)dB(z/
√
d), C(π − z/

√
d) = (−1)dC(z/

√
d), D(π − z/

√
d) = (−1)d−1D(z/

√
d),

σ2(π−z
√
d) = σ2(z/

√
d), and ρ(π−z

√
d) = (−1)dρ(z/

√
d). Hence, B12(π−z/

√
d)

in (3.6) becomes(
(−1)dσ2(z/

√
d)ρ(z/

√
d), (−1)d−1D(z/

√
d), . . . , (−1)d−1D(z/

√
d)
)
,

the rest being unchanged. This corresponds, for example, to performing some
change of signs (depending on the parity of d) on the coordinates of Y ′

� (t). Gathering
the different � this may imply a change of sign in det(Y′(t)) that plays no role
because of the absolute value. As a consequence

E(π − z/
√
d) = E(z/

√
d).

In conclusion, for the next step it suffices to dominate the integral in the r.h.s of
(3.7) restricted to the interval [0,

√
dπ/2].

Step 4 (Domination). The following lemma gives bounds for the different terms.

Lemma 3.2. There exists some constant α, 0 < α ≤ 1/2, and some integer d0
such that for z√

d
≤ π

2 and d > d0:

• C ≤ D ≤ cosd−2( z√
d
) ≤ exp(−αz2);

• |A| ≤ z exp(−αz2);
• |B| ≤ (1 + z2) exp(−αz2);
• for z ≥ z0, 1− C2 ≥ 1− C2 −A2 ≥ C > 0;
• 0 ≤ 1− σ2 ≤ C exp(−2αz2);
• |ρ| ≤ C(1 + z2)2 exp(−2αz2).

Proof. We give the proof of the first item; the other cases are similar or easier. On
[0, π/2] there exists α1, 0 < α1 < 1/2, such that

cos(ψ) ≤ 1− α1ψ
2.

Thus,

cosd−2

(
z√
d

)
≤
(
1− α1z

2

d

)d−2

≤ exp

(
− α1z

2(d− 2)

d

)
≤ exp

(
− αz2

)
,

as soon as α < α1 and d is big enough. �

We have to find a dominant and prove the convergence of the integral at zero
and at infinity.

At zero, since the function G is bounded we have to give bounds for

d
m−1

2 sinm−1
(

z√
d

)
σ2( z√

d
)(

1− cos2d( z√
d
)
)m/2

.
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Clearly, d
m−1

2 sinm−1(z/
√
d) ≤ zm−1. Besides,

σ2
(

z√
d

)
(
1− cos2d( z√

d
)
)m

2
=

1− c2d(z)− c′2d (z)

(1− c2d(z))
m
2 +1

,

where c(z) = C(z/
√
d).

For the denominator, using Lemma 3.2, we have

(3.8) 1− c2d(z) ≥ C(1− exp(−2αz2)).

We turn now to the numerator. Let Xd(.) be a formal Gaussian stationary process
on the line with covariance cd. Hence,

1− c2d(z)− c′2d (z) = Var
(
Xd(z)|Xd(0), X

′
d(0)
)

= Var
(
Xd(z)−Xd(0)− zX ′

d(0)|Xd(0), X
′
d(0)
)

≤ Var
(
Xd(z)−Xd(0)− zX ′

d(0)
)
= z4Var

(∫ 1

0

(1− t)X ′′
d (ut)dt

)
,

where we used the Taylor formula with the integral form of the remainder. The
covariance function cos(z/

√
d) corresponds to the spectral measure

μ =
1

2

(
δ−d−1/2 + δd−1/2

)
;

see [1]. The spectral measure associated to cd(z) = cosd(z/
√
d) is the d-th convo-

lution of μ, and a direct computation shows that its fourth spectral moment exists
and is bounded uniformly in d. As a consequence, Var(X ′′

d (t)) is bounded uniformly
in d, yielding that

(3.9) 1− c2d(z)− c′2d (z) ≤ Cz4.

Using (3.8) and (3.9) we get the convergence at zero.
At infinity, define

H
(
σ2

(
z√
d

)
, C
(

z√
d

)
, ρ

(
z√
d

)
,D
(

z√
d

))

=
σ2( z√

d
)(

1− cos2d( z√
d
)
)m/2

G

(
ρ

(
z√
d

)
,D
(

z√
d

))
dz.

Multiplication of bounded Lipschitz functions gives a Lipschitz function; thus

∣∣∣∣H
(
σ2

(
z√
d

)
, C
(

z√
d

)
, ρ

(
z√
d

)
,D
(

z√
d

))
−H(1, 0, 0, 0)

∣∣∣∣
≤ C

(
|σ2 − 1|+ |C|+ |ρ|+ |D|

)
.

The proof is achieved with Lemma 3.2.
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3.3. Positivity of the limit variance.

3.3.1. Hermite expansion of the number of real roots. We introduce the Hermite
polynomials Hn(x) by H0(x) = 1, H1(x) = x, and Hn+1(x) = xHn(x)−nHn−1(x).
The multi-dimensional versions are, for multi-indexes α = (α�) ∈ N

m and β =

(β�,k) ∈ N
m2

and vectors y = (y�) ∈ R
m and y′ = (y′�,k) ∈ R

m2

,

Hα(y) =
m∏
�=1

Hα�
(y�), Hβ(y

′) =
m∏

�,k=1

Hβ�,k
(y′�,k).

It is well known that the standardized Hermite polynomials { 1√
n!
Hn}, { 1√

α!
Hα},

and { 1√
β!
Hβ} form orthonormal bases of the spaces L2(R, φ1), L

2(Rm, φm), and

L2(Rm2

, φm2) respectively. Here, φj stands for the standard Gaussian measure on
R

j (j = 1,m,m2) and α! =
∏m

�=1 α�!, β! =
∏m

�,k=1 β�,k!. See [16, 17] for a general
picture of Hermite polynomials.

Before stating the Hermite expansion for the normalized number of roots of Y

we need to introduce some coefficients. Let fβ (β ∈ R
m2

) be the coefficients in the

Hermite basis of the function f : Rm2 → R such that f(y′) = | det(y′)|. That is,
f(y′) =

∑
β∈Rm2 fβHβ(y

′) with

fβ = f(β1,...,βm) =
1

β!

∫
Rm2

| det(y′)|Hβ(y
′)φm2(y′)dy′

=
1

β1! . . .βm!

∫
Rm2

| det(y′)|
m∏
l=1

Hβl
(y′

l)
exp− ||y′

l||
2

2

(2π)
m
2

dy′
l,(3.10)

with βl = (βl1, . . . , βlm) and y′
l = (y′l1, . . . , y

′
lm): l = 1, . . . ,m.

Parseval’s Theorem entails ||f ||22 =
∑∞

q=0

∑
|β|=q f

2
ββ! < ∞. Moreover, since the

function f is even w.r.t. each column, the above coefficients are zero whenever |βl|
is odd for at least one l = 1, . . . ,m.

To introduce the next coefficients let us consider first the coefficients in the
Hermite basis in L2(R, φ1) for the Dirac delta δ0(x). They are b2j = 1√

2π
(− 1

2 )
j 1
j!

and zero for odd indices [10]. Introducing now the distribution
∏m

j=1 δ0(yj) and
denoting as bα its coefficients it holds that

(3.11) bα =
1

[α2 ]!

m∏
j=1

1√
2π

[
− 1

2

][αj
2 ]

or bα = 0 if at least one index αj is odd.
Since the formulas for the covariances of Hermite polynomials work in a neater

way when the underlying random variables are standardized, we define the stan-
dardized derivative as

Y
′
�(t) :=

Y ′
� (t)√
d

and Y
′
(t) := (Y

′
1(t), . . . , Y

′
m(t)),

where Y ′
� (t) denotes the spherical derivative of Y� at t ∈ Sm. As said above, the

k-th component of Y
′
�(t) in a given basis is denoted by Y

′
�k(t).
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Proposition 3.3. With the same notation as above, we have, in the L2 sense, that

N̄d :=
NY

d − 2dm/2

2dm/4
=

∞∑
q=1

Iq,d,

where

Iq,d =
dm/4

2

∫
Sm

∑
|γ|=q

cγHα(Y(t))Hβ(Y
′
(t))dt,

with γ = (α,β) ∈ N
m × N

m2

and |γ| = |α|+ |β| and cγ = bαfβ.

Remark 3.4. Hermite polynomials’ properties imply that for q �= q′,

E (Iq,dIq′,d) = 0.

Remark 3.5. The main difficulty in order to obtain a CLT relies on the bound of
the variance of the tail

∑
q≥Q Iq,d because of the degeneracy of the covariances of

(Y,Y) near the diagonal {(s, t) ∈ Sm×Sm : s = t}. Besides, on the sphere, finding
a convenient re-scaling as in the one-dimensional case [4] is a difficult issue.

Proposition 3.3 is a direct consequence of the following lemma.

Lemma 3.6. For ε > 0 define

Nε :=

∫
Sm

| det(Y′(t))| δε(Y(t))dt,

where δε(y) :=
∏m

�=1
1
2ε1{|y�|<ε} for y = (y1, . . . , ym) and Y′ is the spherical deriv-

ative of Y. Then, we have the following:

(1) For v ∈ R
m, let NY

d (v) denote the number of real roots in Sm of the
equation Y(t) = v. Then, NY

d (v) is bounded above by 2dm almost surely.
(2) Nε → NY

d almost surely and in the L2 sense as ε → 0.
(3) The random variable NY

d admits a Hermite expansion.

Proof. Since the paths of Y are smooth, Proposition 6.5 of [1] implies that for
every v ∈ R

m almost surely there is no point t ∈ Sm such that Y(t) = v and the
spherical gradient is singular. Using the local inversion theorem, this implies that
the roots of Y = v are isolated and by compactness they are finitely many. As a
consequence, NY

d (v) is well defined and a.s. finite. Moreover, for every t ∈ R
m+1

such that Y (t) = v, ‖t‖ = 1, we have that the set {Y ′
1(t), . . . , Y

′
m(t), t} is almost

surely linearly independent in R
m+1. This implies thatNY

d (v) is uniformly bounded
by the Bézout number 2dm, concluding (1) (see for example Milnor [15, Lemma 1,
p. 275]).

By the inverse function theorem, a.s. for every regular value v ∈ R
m, NY

d (·) is
locally constant in a neighborhood of v. Furthermore, by the Area Formula (see
Federer [8] or [1, Proposition 6.1]), for small ε > 0 we have

(3.12) Nε =
1

(2ε)m

∫
[−ε,ε]m

NY
d (v) dv, a.s.

Hence,

(3.13) NY
d (0) = lim

ε→0
Nε, a.s.

From (1) and (3.12) we have Nε ≤ 2dm a.s. Then, the convergence in (3.13) also
happens in L2.
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This convergence allows us getting a Hermite expansion. We have

δε(y) =
∑

α∈Nm

bεαHα(y),

∣∣∣∣det
(

y′
√
d

)∣∣∣∣ = ∑
β∈Nm2

fβHβ

(
y′
√
d

)
,

where bεα are the Hermite coefficients of δε(y) and the fβ have already been defined.
Furthermore, we know that limε→0 b

ε
α = bα. Now, taking limit and regrouping

terms we get as in Estrade and León [6] that

Nd = dm/2
∞∑
q=0

∑
|α|+|β|=q

bαfβ

∫
Sm

Hα(Y(t))Hβ(Y
′
(t))dt.

This concludes the proof. �

3.3.2. V∞ > 0. To prove that V∞ > 0 we use the Hermite expansion. In fact,

V 2
∞ = lim

d→∞

∞∑
q=2

Var(Iq,d) ≥ lim
d→∞

Var(I2,d).

By Proposition 3.3, we have

I2,d =
dm/4

2

∑
|γ|=2

cγ

∫
Sm

Hα(Y(t))Hβ(Y
′
(t))dt.

The coefficients cγ = bαfβ vanish for any odd α� and |β�|. Thus, the only possi-
bilities to satisfy the condition |γ| = 2 are that either only one of the indices is 2
and the rest vanish or β�,k = β�,k′ = 1 for some k �= k′ and the rest vanish. Hence,

I2,d =
dm/4

2

∫
Sm

[
m∑
�=1

(
b2b

m−1
0 f(0,...,0)H2(Y�(t)) + bm0 f̃�12H2(Y

′
�,1(t))

)

+

m∑
k=2

bm0 f̃�k2H2(Y
′
�,k(t)) +

∑
k �=k′

bm0 f̃�kk′1H1(Y
′
�,k(t))H1(Y

′
�,k′(t))

]
dt,

where f̃�k2 = f(0,...,β�k,0,...,0), β�k = 2 and f̃�kk′1 = f(0,...,β�k,...,β�k′0,...,0), β�k =
β�k′ = 1. By (3.4)-(3.5) the variables in different sums are orthogonal when eval-
uated at s, t ∈ Sm. Now, by Mehler’s formula, E (H2(ξ)H2(η)) = 2(E (ξη))2 ≥ 0
for jointly normal variables ξ, η. Hence, bounding the sum of the variances by one
convenient term, we have

Var(I2,d) ≥ Var

(
dm/4

2
bm0 f̃�22

∫
Sm

H2(Y
′
�2(t))dt

)

=
dm/2

2
(bm0 f̃�22)

2

∫
(Sm)2

(EY
′
�,2(s)Y

′
�,2(t))

2dsdt

= (bm0 f̃�22)
2 d

m/2

2

∫
(Sm)2

(
〈s, t〉d − (d− 1) 〈s, t〉d−2

√
1− 〈s, t〉2

)2

dsdt,

where the last equality is a consequence of (3.3).
The integral tends to a positive limit as can be seen using Lemma 3.1 and the

scaling t = z/
√
d as in Section 3.2.
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Finally, by (3.11) b0 �= 0. Besides, by the symmetry of the function f(·) = | det(·)|
and (3.10), f̃�k2 = f̃�k′2 for all �, k, k′. Therefore, adding up (3.10) w.r.t. � and k,
we get

f̃�22 =
1

m2

(
E (| det(y′)|‖y′‖2F )−m2

E (| det(y′)|)
)
,

with ‖ · ‖F being Frobenius’s norm and y′ an m × m standard Gaussian matrix.

Straightforward computations using polar coordinates show that f̃�22 > 0 for all
m ≥ 1. This concludes the proof of the claim V∞ > 0.

Note added in proof

Some time after this article was submitted the authors became aware that Le-
tendre and Puchol in [14] extended our main result to the case of systems of r
equations and m variables (r ≤ m). The methods used in the proof of the finiteness
of the limit variance are rather different from ours, but their proof of its positivity
is influenced by ours.
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[1] Jean-Marc Azäıs and Mario Wschebor, Level sets and extrema of random processes and fields,
John Wiley & Sons, Inc., Hoboken, NJ, 2009. MR2478201
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