Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Forced vibrations of systems with nonlinear restoring force


Authors: K. O. Friedrichs and J. J. Stoker
Journal: Quart. Appl. Math. 1 (1943), 97-115
MSC: Primary 36.0X
DOI: https://doi.org/10.1090/qam/8292
MathSciNet review: 8292
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Appleton, E. V., On the anomalous behavior of a galvanometer, Phil. Mag., Ser. 6, 47, 609 (1924).
  • [2] Baker, J. G., Forced vibrations with nonlinear spring constants, Trans. Am. Soc. Mech. Eng. 54, 162 (1932).
  • [3] Banerji, D., On the theory and some applications of sub-synchronous pendulums, Proc. Indian Ass. Cultivation Sci. 7, 145 (1923).
  • [4] Brown, E. W., Elements of the theory of resonance, Rice Institute Pamphlet 19, No. 1, 1932.
  • [5] Den Hartog, J. P., Mechanical vibrations, McGraw-Hill, New York and London, 2nd Edition, 1940, Chaps. VII and VIII.
  • [6] Den Hartog, J. P., and Mikina, S. J., Forced vibrations with nonlinear spring constants, Trans. Am. Soc. Mech. Eng. 54, 157 (1932).
  • [7] Den Hartog, J. P., and Heiles, R. M., Forced vibrations in nonlinear systems with various combinations of linear springs, Journ. App. Mech. 3, A-127 (1936).
  • [8] Duffing, G., Erzwungene Schwingungen bei veranderlicher Eigenfrequenz, F. Vieweg, Braunschweig, 1918.
  • [9] Georg Hamel, Über erzwungene Schwingungen bei endlichen Amplituden, Math. Ann. 86 (1922), no. 1-2, 1–13 (German). MR 1512073, https://doi.org/10.1007/BF01458566
  • [10] Hammerstein, A., Eine nichtlineare Randwertaufgabe, Jahresber. d. D. Math. Ver. 39, 59 (1930)
  • [11] Hort, W., Technische Schwingungslehre, J. Springer, Berlin, 1922, Chap. XIX.
  • [12] Rudolf Iglisch, Zur Theorie der Schwingungen, Monatsh. Math. Phys. 42 (1935), no. 1, 7–36 (German). 3. Mitteilung. MR 1550411, https://doi.org/10.1007/BF01733276
  • [13] Rudolf Iglisch, Über die Lösungen des Duffingschen Schwingungsproblems bei großen Parameterwerten, Math. Ann. 111 (1935), no. 1, 568–581 (German). MR 1513014, https://doi.org/10.1007/BF01472239
  • [14] Rudolf Iglisch, Die erste Resonanzkurve beim Duffingschen Schwingungsproblem, Math. Ann. 112 (1936), no. 1, 221–246 (German). MR 1513047, https://doi.org/10.1007/BF01565415
  • [15] Iglisch, R., Über den Resonanzbegriff bei nichtlinearen Schwingungen, Zeit. f. Ang. Math. u. Mech. 17, 249 (1937).
  • [16] Jacobsen, L. S. and Jespersen, H. J., Steady forced vibrations of single mass systems with symmetrical as well as unsymmetrical nonlinear restoring elements, J. Franklin Inst. 220, 467 (1935).
  • [17] Theodore von Kármán, The engineer grapples with non-linear problems, Bull. Amer. Math. Soc. 46 (1940), 615–683. MR 0003131, https://doi.org/10.1090/S0002-9904-1940-07266-0
  • [18] Krylov, N. and Bogoliùboff, N., Über einige Methoden der nichtlinearen Mechanik in ihren Anwendungen auf die Theorie der nichtlinearen Resonanz, Schweizerische Bauzeitung 103, 225, 267 (1934). This is a summary and translation of a number of papers of these authors (by K. Grassmann). An English translation of a monograph of these authors has appeared recently: Introduction to non-linear mechanics. Translated by S. Lefschetz. Princeton University Press, 1943.
  • [19] Krylov, N. and Bogoliùboff, N., Méthodes approcheés de la mécanique nonlinéaire dans leur application á l'étude de la perturbation des mouvements périodiques et de divers phénomenes de résonance s'y rapportant, Acad. Sc. d'Ukraine, Kiev, No. 14, p. 112, 1935.
  • [20] Lehr, E., Schwingungstechnik, vol. 2, J. Springer, Berlin, 1934.
  • [21] Martienssen, O., Über neue Resonanzerscheinungen in Wechselstromkreisen, Phys. Zeit. 11, 448 (1910).
  • [22] Martin, H., Über Tonhöhe und Dämpfung der Schwingungen von Saiten in verschiedenen Flüssigkeiten, Ann. d. Physik 77, 627 (1925).
  • [23] Meissner, E., Graphische Analysis vermittelst des Linienbildes einer Funktion, Verlag der Schweiz. Bauzeit, Rascher and Co., Zürich, 1932.
  • [24] Rauscher, M., Steady oscillations of systems with nonlinear and unsymmetrical elasticity, Journ. App. Mech. 5, A-169 (1938).
  • [25] Rauscher, M., Steady forced oscillations of permanent nonlinear systems, Proc. Fifth Int. Congress Appl. Mech., J. Wiley and Sons, New York, Chapman and Hall, London, 1939, p. 681.
  • [26] Rüdenberg, R., Einige unharmonische Schwingungsformen mit grosser Amplitude, Zeit. f. Ang. Math. u. Mech. 3, 454 (1923).
  • [27] Silverman, I. K., On forced pseudo-harmonic vibrations, Journ. Franklin Inst. 217, 743 (1934).
  • [28] Timoshenko, S., Vibration Problems in Engineering, D. Van Nostrand Co., New York, 1928, Chap. II.
  • [29] Trefftz, E., Zur Berechnung der Stabilität periodischer Bewegungsvorgänge, Zeit. f. Ang. Math. u. Mech. 5, 473 (1925).
  • [30] E. Trefftz, Zu den Grundlagen der Schwingungstheorie, Math. Ann. 95 (1926), no. 1, 307–312 (German). MR 1512280, https://doi.org/10.1007/BF01206613
  • [31] Watanabe, Y , On non-harmonic oscillations, Proc. Fifth Int. Congress App. Mech., J. Wiley and Sons, New York; Chapman and Hall, London, 1939, p. 685.
  • [32] McCrumm, J. D., An experimental investigation of subharmonic currents, Transactions of the Am. Inst. of El. Eng. 60, 533 (1941).

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 36.0X

Retrieve articles in all journals with MSC: 36.0X


Additional Information

DOI: https://doi.org/10.1090/qam/8292
Article copyright: © Copyright 1943 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website