QUARTERLY OF APPLIED MATHEMATICS

EDITED BY
H. W. BODE
J. M. LESSELLS

H. L. DRYDEN
W. PRAGER
J. L. SYNGE

TH. v. KÁRMÁN
I. S. SOKOLNIKOFF

WITH THE COLLABORATION OF
M. A. BIOT
H. W. EMMONS
J. A. GOFF
P. LE CORBEILLER
S. A. SCHELKUNOFF
SIR GEOFFREY TAYLOR

L. N. BRILLOUIN
W. FELLER
J. N. GOODIER
F. D. MURNAGHAN
W. R. SEARS
S. P. TIMOSHENKO

J. P. DEN HARTOG
K. O. FRIEDRICH
G. E. HAY
E. REISSNER
R. V. SOUTHWELL
H. S. TSIE

Volume V JANUARY • 1948 Number 4
QUARTERLY
OF
APPLIED MATHEMATICS

This periodical is published quarterly under the sponsorship of Brown University, Providence, R.I. For its support, an operational fund is being set up to which industrial organizations may contribute. To date, contributions of the following industrial companies are gratefully acknowledged:

Bell Telephone Laboratories, Inc.; New York, N. Y.,
The Bristol Company; Waterbury, Conn.,
Curtiss Wright Corporation; Airplane Division; Buffalo, N. Y.,
Eastman Kodak Company; Rochester, N. Y.,
General Electric Company; Schenectady, N. Y.,
Gulf Research and Development Company; Pittsburgh, Pa.,
Leeds & Northrup Company; Philadelphia, Pa.,
Pratt & Whitney, Division Niles-Bement-Pond Company; West Hartford, Conn.,
Republic Aviation Corporation; Farmingdale, Long Island, N. Y.,
United Aircraft Corporation; East Hartford, Conn.,
Westinghouse Electric and Manufacturing Company; Pittsburgh, Pa.

The Quarterly prints original papers in applied mathematics which have an intimate connection with application in industry or practical science. It is expected that each paper will be of a high scientific standard; that the presentation will be of such character that the paper can be easily read by those to whom it would be of interest; and that the mathematical argument, judged by the standard of the field of application, will be of an advanced character.

Manuscripts submitted for publication in the Quarterly of Applied Mathematics should be sent to the Managing Editor, Professor W. Prager, Quarterly of Applied Mathematics, Brown University, Providence 12, R. I., either directly or through any one of the Editors or Collaborators. In accordance with their general policy, the Editors welcome particularly contributions which will be of interest both to mathematicians and to engineers. Authors will receive galley proofs only. Seventy-five reprints without covers will be furnished free; additional reprints and covers will be supplied at cost.

The subscription price for the Quarterly is $6.00 per volume (April-January), single copies $2.00. Subscriptions and orders for single copies may be addressed to: Quarterly of Applied Mathematics, Brown University, Providence 12, R.I., or to 450 Ahnaip St., Menasha, Wisconsin.

Entered as second class matter March 14, 1944, at the post office at Providence, Rhode Island, under the act of March 3, 1879. Additional entry at Menasha, Wisconsin.
CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. R. Bennett</td>
<td>Distribution of the sum of randomly phased components</td>
<td>385</td>
</tr>
<tr>
<td>S. Bergman</td>
<td>Punch-card machine methods applied to the solution of the torsion problem</td>
<td>69</td>
</tr>
<tr>
<td>C. J. Bouwkamp</td>
<td>Concerning a new transcendent, its tabulation and application in antenna theory</td>
<td>394</td>
</tr>
<tr>
<td>O. L. Bowie</td>
<td>Elastic stresses due to a semi-infinite band of hydrostatic pressure acting over a cylindrical hole in an infinite solid</td>
<td>100</td>
</tr>
<tr>
<td>J. F. Carlson</td>
<td>(See A. E. Heins)</td>
<td></td>
</tr>
<tr>
<td>G. F. Carrier</td>
<td>On a conformal mapping technique</td>
<td>101</td>
</tr>
<tr>
<td>P. Y. Chou</td>
<td>The turbulent flow along a semi-infinite plate</td>
<td>346</td>
</tr>
<tr>
<td>W. S. Coleman</td>
<td>Analysis of the turbulent boundary layer for adverse pressure gradients involving separation</td>
<td>182</td>
</tr>
<tr>
<td>G. Comenetz</td>
<td>Continuous heating of a hollow cylinder</td>
<td>503</td>
</tr>
<tr>
<td>H. S. M. Coxeter</td>
<td>The product of three reflections</td>
<td>217</td>
</tr>
<tr>
<td>P. E. Guenther</td>
<td>(See B. L. Hicks)</td>
<td></td>
</tr>
<tr>
<td>W. D. Hayes</td>
<td>On hypersonic similitude</td>
<td>105</td>
</tr>
<tr>
<td>A. E. Heins and J. F. Carlson</td>
<td>The reflection of an electromagnetic plane wave by an infinite set of plates, II</td>
<td>82</td>
</tr>
<tr>
<td>M. Herzberger and R. H. Morris</td>
<td>A contribution to the method of least squares</td>
<td>354</td>
</tr>
<tr>
<td>B. L. Hicks, P. E. Guenther and R. H. Wasserman</td>
<td>New formulations of the equations for compressible flow</td>
<td>357</td>
</tr>
<tr>
<td>G. Horvay</td>
<td>Rotor blade flapping motion</td>
<td>149</td>
</tr>
<tr>
<td>L. Infeld</td>
<td>The influence of the width of the gap upon the theory of antennas</td>
<td>113</td>
</tr>
<tr>
<td>W. M. Kincaid</td>
<td>Numerical methods for finding characteristic roots and vectors of matrices</td>
<td>320</td>
</tr>
<tr>
<td>R. King and T. W. Winternitz</td>
<td>The cylindrical antenna with gap</td>
<td>403</td>
</tr>
<tr>
<td>E. V. Laitone</td>
<td>The subsonic flow about a body of revolution</td>
<td>227</td>
</tr>
<tr>
<td>H. A. Lang</td>
<td>Note on Rayleigh's method and the non-uniform strut</td>
<td>510</td>
</tr>
<tr>
<td>C. C. Lin</td>
<td>Corrections to my paper “On an extension...”</td>
<td>238</td>
</tr>
<tr>
<td>C. B. Ling</td>
<td>Torsion of a circular tube with longitudinal circular holes</td>
<td>168</td>
</tr>
<tr>
<td>N. W. McLachlan</td>
<td>Vibrational problems in elliptical coordinates</td>
<td>289</td>
</tr>
<tr>
<td>R. D. Mindlin</td>
<td>Corrections to my paper “The analogy between...”</td>
<td>238</td>
</tr>
<tr>
<td>D. Middleton</td>
<td>Some general results in the theory of noise through non-linear devices</td>
<td>445</td>
</tr>
<tr>
<td>E. W. Montroll</td>
<td>Averages over normal modes of coupled oscillators with application to theory of specific heats</td>
<td>223</td>
</tr>
<tr>
<td>R. H. Morris</td>
<td>(See M. Herzberger)</td>
<td></td>
</tr>
<tr>
<td>W. Prager and J. L. Synge</td>
<td>Approximations in elasticity based on the concept of function space</td>
<td>241</td>
</tr>
<tr>
<td>E. Reissner</td>
<td>On bending of elastic plates</td>
<td>55</td>
</tr>
<tr>
<td>I. Roettinger</td>
<td>A generalization of the finite Fourier transformation and applications</td>
<td>298</td>
</tr>
<tr>
<td>S. A. Schaaf</td>
<td>On the superposition of a heat source and contact resistance</td>
<td>107</td>
</tr>
<tr>
<td>W. R. Sears</td>
<td>A second note on compressible flow about bodies of revolution</td>
<td>89</td>
</tr>
</tbody>
</table>
S. Sherman: A note on stability calculations and time lag 92
M. Schiffman and D. C. Spencer: The flow of an ideal incompressible fluid about a lens 270
R. M. Snow: Aerodynamics of thin quadrilateral wings at supersonic speeds 417
D. C. Spencer: (See M. Schiffman)
A. F. Stevenson: Relations between the transmitting and receiving properties of antennas 369
J. J. Stoker: Surface waves in water of variable depth 1
J. L. Synge: (See W. Prager)
H. S. Tsien: Lower buckling load in the non-linear buckling theory for thin shells 236
L. B. Tuckerman: Multiple reflections by plane mirrors 133
J. W. Tukey: Linearization of solutions in supersonic flow 361
A. Vazsonyi: A new derivation of the method of characteristics for axially symmetrical supersonic flow 499
R. H. Wasserman: (See B. L. Hicks)
A. Weinstein: The center of shear and the center of twist 97
A. Weinstein: On axially symmetric flows 429
T. W. Winternitz: (See R. King)
A. Wintner: A criterion for stable characteristic exponents 232
Book Reviews 112, 238, 365, 512
Now you can keep abreast of world wide developments in Applied Mechanics!

How? Through the pages of

APPLIED MECHANICS REVIEWS

Approximately 500 magazines are now serving the applied mechanics and allied fields. They contain accounts of new developments, experiments and researches. They present new theories, ideas, methods, new data, and calculations having general application. Much of this information you can utilize, but because you seldom or never see many of these publications, you are unaware of its existence.

To correct this situation and make the significant articles in these magazines readily accessible to you, APPLIED MECHANICS REVIEWS will examine their contents and all other sources throughout the world in which interesting information might be published but will report, analyze and review only the important theoretical and experimental papers in the fields covered by Solid Mechanics, Fluid Mechanics, Thermodynamics and Heat Transfer, as well as applications of these subjects to Geophysics and to specialized fields such as Soil Mechanics, Acoustics, Ballistics, and Lubrication.

Reviews, each about 500 words in length, will be written and signed by authorities in the particular fields of mechanics involved. Moreover, every effort will be made to keep the lapse of time between the publication date of the paper and its review to less than two months, thereby making APPLIED MECHANICS REVIEWS a truly "NEWS" Journal.

If you want to keep in touch with the work of your colleagues in the research centers of the world and do so with a minimum expenditure of time and effort, don't fail to subscribe for APPLIED MECHANICS REVIEWS.

As a member of one of the Associations cooperating with the A.S.M.E. in the publication of this Journal, you may take advantage of the Special Charter Rate of $9.00 (Regular price $12.50 annually).

To receive the first number and the succeeding issues for 1948—mail your subscription order today to—

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
29 West 39th Street, New York 18, N.Y.
CONTENTS

A. F. Stevenson: Relations between the transmitting and receiving properties of antennas 369
W. R. Bennett: Distribution of the sum of randomly phased components 385
C. J. Bouwkamp: Concerning a new transcendent, its tabulation and application in antenna theory 394
R. King and T. W. Winternitz: The cylindrical antenna with gap 403
R. M. Snow: Aerodynamics of thin quadrilateral wings at supersonic speeds 417
A. Weinstein: On axially symmetric flows 429
D. Middleton: Some general results in the theory of noise through non-linear devices 445

Notes:
A. Vazsonyi: A new derivation of the method of characteristics for axially symmetrical supersonic flow 499
G. Comenetz: Continuous heating of a hollow cylinder 503
H. A. Lang: Note on Rayleigh’s method and the non-uniform strut 510

Book Reviews 512

4 Timely McGraw-Hill Books

ELEMENTS OF NOMOGRAPHY
By Raymond D. Douglass and Douglas P. Adams, Massachusetts Institute of Technology. 215 pages, $3.50
Covers the study, understanding, design, creation, and practical use of the alignment diagram, with emphasis of the mathematical foundation of the diagram theory.

APPLIED MATHEMATICS FOR ENGINEERS AND PHYSICISTS
By Louis A. Pipes, formerly of Harvard University. 618 pages, $5.50
Covers those topics of higher mathematics related to electrical, mechanical, and civil engineering, as well as the mathematics of classical physics.

MATHEMATICAL METHODS IN ENGINEERING
By Theodore v. Kármán, California Institute of Technology, and Maurice A. Biot, Columbia University. 489 pages, $4.50
Seeks to familiarize engineering students with the special techniques used in the mathematical treatment of engineering problems.

INDEX OF MATHEMATICAL TABLES
By A. Fletcher, J. C. P. Miller, and L. Rosenhead, University of Liverpool. 451 pages, $16.00
A complete index to all published and some unpublished mathematical tables, compiled by three of the foremost recognized experts in the international field of mathematical tables and their reliability.

Send for copies on approval
McGRAW-HILL BOOK COMPANY, Inc.
330 West 42nd Street New York 18, N.Y.
BOOK REVIEWS

In this seventh edition the tables of the natural logarithm, exponential and hyperbolic functions have been extended to six places, the argument being given to four, three, and three places, respectively. For numbers less than unity \(\ln x + 10 \) is given instead of \(-\ln x \) as in the previous edition.

S. Prager

In this revised edition additional material has been included on various progressions, powers of Taylor series, roots of quadratic equations, square roots of complex quantities, inverse trigonometric functions, probability integrals, hyperbolic and Bessel functions. New indefinite integrals involving \(a+bx \), \((ax^2+bx+c)^{1/2} \), \(\sin x \), \(\cos x \), and Bessel functions have also been added, together with some definite integrals. Further additions include a table of the normal probability integral and an extension of the bibliography.

S. Prager

Tables of supersonic flow around cones. By the staff of the Computing Section, Center of Analysis, Massachusetts Institute of Technology, Department of Electrical Engineering. Under the direction of Zdenek Kopal. Cambridge, Massachusetts, 1947. xviii + 555 pp. $5.00.

The introduction to this volume is a concise review of the derivation of the ordinary non-linear differential equation defining the supersonic flow of a compressible fluid past a circular cone and a statement of the relations among the state variables on either side of the shock implied by such a flow. The remainder of the book is a tabulation of the numerically obtained solutions of this problem.

For air (\(\gamma = 1.405 \)), the velocity components and velocity of sound are tabulated against the flow direction parameter \(\theta \) for cone angles of 5°, 7.5°, ..., 22.5°, 25°, 30°, 35°, 40°, 45°, and 50°. For each cone a complete range of wave angles is considered. The increments in \(\theta \) vary from 1/4° to 1° for various solutions and regions. In general there is five digit accuracy. A less extensive but similar table is presented for \(\gamma = 4/3 \). Several cross tabulations are also included.

G. F. Carrier

Dr. Emmons has compiled tables of the most commonly used functions occurring in gas dynamics. The quantities tabulated include pressure, velocity, density, stream-tube area, dynamic pressure, temperature, velocity of sound and Prandtl-Meyer angles, as functions of Mach number over the complete range. Similar quantities following a normal shock wave are also tabulated.

A sample of five hundred of the numbers in these tables was taken to check the computing accuracy, and it was found that there were four errors in the fifth published figure and two errors by one unit in the fourth figure. It appears then that, in general, the first four figures are accurate. Unpublished tables similar to these have been in use by the reviewer for several years and have been found to be of great practical utility in performing computations involving the flow of room-temperature air. These tables are accordingly highly recommended for the use of aerodynamicists.

Arthur Kantrowitz