Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Minimal problems in airplane performance

Author: Boris Garfinkel
Journal: Quart. Appl. Math. 9 (1951), 149-162
MSC: Primary 76.1X
DOI: https://doi.org/10.1090/qam/43664
MathSciNet review: 43664
Full-text PDF

Abstract | Similar Articles | Additional Information

Abstract: We develop here the theory of operating an airplane so as to minimize an arbitrary function of the end-values of the generalized coordinates. A propeller-driven airplane is treated as a particle in equilibrium, subject to the forces of drag, lift, thrust, and gravity. We assume that the specific fuel consumption is a function of the power only, and that the available power is independent of the altitude.

The problem is shown to be of the Bolza type in the Calculus of Variations, with the complications arising from the presence of inequalities, discontinuities, and variables whose derivatives do not enter the problem explicitly. The Euler-Lagrange equations are derived and discussed.

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76.1X

Retrieve articles in all journals with MSC: 76.1X

Additional Information

DOI: https://doi.org/10.1090/qam/43664
Article copyright: © Copyright 1951 American Mathematical Society

American Mathematical Society