Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On the plane problem of a perfect plastic body

Author: Hilda Geiringer
Journal: Quart. Appl. Math. 9 (1951), 295-308
MSC: Primary 73.2X
DOI: https://doi.org/10.1090/qam/43702
MathSciNet review: 43702
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. Geiringer, (a) Linear differential equations of the plane stress problem of a perfect plastic body, (b) Parabola-yield condition for the perfect plastic body, (c) Simple wave solutions for the plane stress problem of the perfect plastic body, Bull. Amer. Math. Soc., 56, 38-39 (1950).
  • [2] P. G. Hodge Jr., An introduction to the mathematical theory of perfectly plastic solids, Rep. A 11-52, Graduate Division of Applied Mathematics, Brown University, Providence, R. I., 1950. MR 0038833
  • [3] W. Jenne, Räumliche Spannungsverteilungen in festen Körpern bei plastischer Deformation, Z. angew, Math. Mech. 8, 1-27 (1928).
  • [4] R. v. Mises, Three remarks on the theory of the ideal plastic body, Reissner Anniversary Volume, Contributions to Applied Mechanics, J. W. Edwards, Ann Arbor, Michigan, 1948, pp. 415–429. MR 0029679
  • [5] William Prager, Recent developments in the mathematical theory of plasticity, J. Appl. Phys. 20 (1949), 235–241. MR 0028760
  • [6] W. Sokolovsky, Plastic plane stressed states according to Mises, C. R. (Doklady) Acad. Sci. URSS (N. S.) 51 (1946), 175–178. MR 0017138

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.2X

Retrieve articles in all journals with MSC: 73.2X

Additional Information

DOI: https://doi.org/10.1090/qam/43702
Article copyright: © Copyright 1951 American Mathematical Society

American Mathematical Society