Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A general solution for the rectangular airfoil in supersonic flow


Author: John W. Miles
Journal: Quart. Appl. Math. 11 (1953), 1-8
MSC: Primary 76.1X
DOI: https://doi.org/10.1090/qam/53715
MathSciNet review: 53715
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The potential on a rectangular airfoil due to an arbitrarily prescribed motion at its surface is obtained by an operational solution of the linearized equations and subsequent comparison with the known solution in steady flow. It is shown that the result can be extended to more general planforms with the aid of the Lorentz transformation. Other methods of solution are noted.


References [Enhancements On Off] (What's this?)

  • [1] Goodman, T. R., The quarter infinite wing oscillating at supersonic speeds, Cornell Aero. Lab. Rep. No. 36 (1951). MR 0051093
  • [2] Goodman, T. R., Aerodynamics of a supersonic rectangular wing striking a sharp edged gust, J. Aero. Sci. 18, 519-526 (1951). MR 0043662
  • [3] Miles, J. W., The oscillating rectangular airfoil at supersonic speeds, Q. Appl. Math. 9, 47-65 (1951); see also J. Aero. Sci. 16, 381 (1949) and U. S. Navord Rep. 1170, NOTS 226 (1949). MR 0040138
  • [4] Miles, J. W., Transient loading of supersonic rectangular airfoils, J. Aero. Sci. 17, 647-652 (1950). MR 0038196
  • [5] Rott, N., On the unsteady motion of a thin rectangular airfoil in supersonic flow, J. Aero. Sci. 18, 775-776 (1951). MR 0047466
  • [6] Stewartson, K., On the linearized potential theory of unsteady supersonic motion, Q. J. Mech. and Appl. Math. 3, 182-199 (1950). MR 0038792
  • [7] Stewart, H. J. and Li, T. Y., Periodic motions of a rectangular wing moving at supersonic speed, J. Aero Sci. 17, 529-539 (1950). MR 0038793
  • [8] Li, T. Y., Purely rolling oscillations of a rectangular wing in supersonic flow, J. Aero. Sci. 18, 191-198 (1951).
  • [9] Stewart, H. J. and Li, T. Y., Source-superposition method of solution of a periodically oscillating wing at supersonic speeds, Q. Appl. Math. 9, 31-45 (1951). MR 0042272
  • [10] A review of ref. 9, Math. Rev. 13, 86 (1951).
  • [11] Kussner, H. G., Algemeine Tragflachentheorie, Luftfahrtforschung 17, 337-378 (1940).
  • [12] Evvard, J. C., Distribution of wave drag and lift in the vicinity of wing tips at supersonic speeds, NACA T. N. 1382 (1947); see also NACA T. N. 1484 (1947). MR 0020900
  • [13] Magnus, W. and Oberhettinger, F., Special functions of mathmetical physics, Chelsea Publ. Co., New York, (1949). MR 0029000
  • [14] Galin, L. A., A wing of rectangular plan form in supersonic flow, (transl. from Russian) A. M. C. F-T S--1217-IA, Wright Field, Dayton, Ohio (1949). MR 0032280
  • [15] Miles J. W., On the reduction of unsteady supersonic flow problems to steady flow problems, J. Aero. Sci. 17, 64 (1950). MR 0033695
  • [16] Jones, R. T., Thin oblique airfoils in supersonic flow, NACA T. N. 1107 (1946). MR 0017094
  • [17] Hayes, W. D., Linearized supersonic flow, Thesis, Calif. Inst. of Tech., Pasadena (1947).
  • [18] Behrbohm, H. and Oswatitsch, K., Flache kegelige Korper in Uberschallströmung, Ing. Arch. 18, 370-377 (1950). MR 0042266
  • [19] Baker, B. and Copson, E. T., Huygens' principle, Oxford U. Press, 2d Ed. (1950).
  • [20] Bateman, H., Partial differential equations, Dover Publ., New York, N. Y. (1944), 384, 487. MR 0010909
  • [21] Davis, H., Diffraction of a sound pulse by a semi-infinite plane, Thesis, Univ. of Calif., Los Angeles (1950).
  • [22] Harkevič, A. A., Akad. Nauk. SSSR, Zurnal Tehn. Fiz. 19, 828-832, 833-838 (1949); see Math. Rev. 12, 370 (1951).
  • [23] Miles, J. W., On the diffraction of an electromagnetic pulse by a wedge, Proc. Roy. Soc. Lon. (A) 212, 547-551 (1952). MR 0053760
  • [24] Friedlander, F. G., On the half plane diffraction problem, Q. J. Mech. and Appl. Math. 4, 344-357 (1951). MR 0044348
  • [25] Miles, J. W., On the general solution for unsteady motion of a rectangular wing in supersonic flow, J. Aero. Sci. 19, 421-422 (1952); the result (5.4) of the present paper is stated therein without proof. MR 0049747

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76.1X

Retrieve articles in all journals with MSC: 76.1X


Additional Information

DOI: https://doi.org/10.1090/qam/53715
Article copyright: © Copyright 1953 American Mathematical Society

American Mathematical Society