Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



An asymmetrical finite difference network

Author: R. H. MacNeal
Journal: Quart. Appl. Math. 11 (1953), 295-310
DOI: https://doi.org/10.1090/qam/99978
MathSciNet review: QAM99978
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. V. Southwell, Relaxation methods in theoretical physics, Chap. II, Oxford Press, 1946. MR 0018983
  • [2] H. W. Emmons, The numerical solution of partial differential equations, Q. Appl. Math. 2, 173-195 (1944). MR 0010680
  • [3] L. C. Woods, Improvements to the accuracy of arithmetical solutions to certain two dimensional field problems, Q. J. Mech. and Appl. Math. 3, 349-363 (1950). MR 0039387
  • [4] G. Kron, Equivalent circuits of the field equations of Maxwell, I.R.E. 32, 289-299 (May 1944). MR 0010695
  • [5] R. H. MacNeal, The solution of elastic plate problems by electrical analogies, J. Appl. Mech. 18, 59-67 (March 1951). MR 0039389
  • [6] G. K. Carter, Numerical and network analyzer solution of the equivalent circuits for the elastic field, J. Appl. Mech. 66, 162-167 (Sept. 1944). MR 0011248
  • [7] L. Fox, The numerical solution of elliptic differential equations when the boundary conditions involve a derivative, Philos. Trans. Roy. Soc., London, (A) 242, 345-378 (1950). MR 0035525
  • [8] R. H. MacNeal, The solution of partial differential equations by means of electrical networks, Ph.D. Thesis, California Institute of Technology (1949).
  • [9] K. Spangenberg, G. Walters and F. Schott, Electrical network analyzers for the solution of electromagnetic field problem, Part I; Theory and design, Proc I.R.E. 37, 724-729 (1949).

Additional Information

DOI: https://doi.org/10.1090/qam/99978
Article copyright: © Copyright 1953 American Mathematical Society

American Mathematical Society