Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Line load applied along generators of thin-walled circular cylindrical shells of finite length


Authors: N. J. Hoff, Joseph Kempner and Frederick V. Pohle
Journal: Quart. Appl. Math. 11 (1954), 411-425
MSC: Primary 73.2X
DOI: https://doi.org/10.1090/qam/59156
MathSciNet review: 59156
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Donnell's differential equations of the thin circular cylindrical shell are integrated in the case when the loads are radial forces or circumferential moments distributed sinusoidally along a generator. Closed form expressions are obtained for the displacements, internal moments, and the membrane stresses. In addition, loads distributed uniformly along a segment of a generator and concentrated loads are discussed and radial forces are combined into a longitudinal moment.


References [Enhancements On Off] (What's this?)

  • [1] Ulrich Finsterwalder, Die Theorie der zylindrischen Schalengewölbe System Zeiss-Dywidag und ihre Anwendung auf die Grossmarkthalle Budapest, Publications Internat. Assoc. Bridge and Structural Engg., vol. 1, p. 127, Zürich, 1932.
  • [2] Herman Schorer, Line load action on thin cylindrical shells, Proc. ASCE, 61, 281 (1935).
  • [3] Fr. Dischinger, Die strenge Theorie der Kreiszylinderschale in ihrer Anwendung auf die Zeiss-Dywidag-Schalen, Beton und Eisen, 34, 257, 283, 392 (1935).
  • [4] A. Aas Jakobsen, Über das Randstörungsproblem an Kreiszylinderschalen, Bauingenieur, 20, 394 (1939).
  • [5] A. Aas Jakobsen, Einzellasten auf Kreiszylinderschalen, Bauingenieur, 22, 343 (1941).
  • [6] Shao Wen Yuan, Thin cylindrical shells subjected to concentrated loads, Quart. Appl. Math. 4 (1946), 13–26. MR 0016031, https://doi.org/10.1090/S0033-569X-1946-16031-0
  • [7] F. K. G. Odqvist, Action of forces and moments symmetrically distributed along a generatrix of a thin cylindrical shell, J. Appl. Mech., 13, A-106 (1946).
  • [8] G. J. Schoessow and L. F. Kooistra, Stresses in a cylindrical shell due to nozzle or pipe connection, J. Appl. Mech., 12, A-107 (1945).
  • [9] A. E. H. Love, A treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944. Fourth Ed. MR 0010851
  • [10] Wilhelm Flügge, Statik und Dynamik der Schalen, Julius Springer, Berlin, 1934, p. 118.
  • [11] C. B. Biezeno and R. Grammel, Technische Dynamik, Julius Springer, Berlin, 1939, p. 469.
  • [12] S. Timoshenko, Theory of plates and shells, McGraw-Hill Book Co., New York, 1940, p. 440.
  • [13] L. H. Donnell, Stability of thin-walled tubes under torsion, NACA Techn. Rep. No. 479, Washington, D. C., 1933.
  • [14] S. B. Batdorf, A simplified method of elastic-stability analysis for thin cylindrical shells, Tech. Rep. Nat. Adv. Comm. Aeronaut., 1947 (1947), no. 874, 25. MR 0032403

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.2X

Retrieve articles in all journals with MSC: 73.2X


Additional Information

DOI: https://doi.org/10.1090/qam/59156
Article copyright: © Copyright 1954 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website