Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Line load applied along generators of thin-walled circular cylindrical shells of finite length

Authors: N. J. Hoff, Joseph Kempner and Frederick V. Pohle
Journal: Quart. Appl. Math. 11 (1954), 411-425
MSC: Primary 73.2X
DOI: https://doi.org/10.1090/qam/59156
MathSciNet review: 59156
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Donnell's differential equations of the thin circular cylindrical shell are integrated in the case when the loads are radial forces or circumferential moments distributed sinusoidally along a generator. Closed form expressions are obtained for the displacements, internal moments, and the membrane stresses. In addition, loads distributed uniformly along a segment of a generator and concentrated loads are discussed and radial forces are combined into a longitudinal moment.

References [Enhancements On Off] (What's this?)

  • [1] Ulrich Finsterwalder, Die Theorie der zylindrischen Schalengewölbe System Zeiss-Dywidag und ihre Anwendung auf die Grossmarkthalle Budapest, Publications Internat. Assoc. Bridge and Structural Engg., vol. 1, p. 127, Zürich, 1932.
  • [2] Herman Schorer, Line load action on thin cylindrical shells, Proc. ASCE, 61, 281 (1935).
  • [3] Fr. Dischinger, Die strenge Theorie der Kreiszylinderschale in ihrer Anwendung auf die Zeiss-Dywidag-Schalen, Beton und Eisen, 34, 257, 283, 392 (1935).
  • [4] A. Aas Jakobsen, Über das Randstörungsproblem an Kreiszylinderschalen, Bauingenieur, 20, 394 (1939).
  • [5] A. Aas Jakobsen, Einzellasten auf Kreiszylinderschalen, Bauingenieur, 22, 343 (1941).
  • [6] Shao Wen Yuan, Thin cylindrical shells subjected to concentrated loads, Q. Appl. Math., 4, 13 (1946). MR 0016031
  • [7] F. K. G. Odqvist, Action of forces and moments symmetrically distributed along a generatrix of a thin cylindrical shell, J. Appl. Mech., 13, A-106 (1946).
  • [8] G. J. Schoessow and L. F. Kooistra, Stresses in a cylindrical shell due to nozzle or pipe connection, J. Appl. Mech., 12, A-107 (1945).
  • [9] A. E. H. Love, A treatise on the mathematical theory of elasticity, Fourth Edition, Dover Publications, New York, 1944, p. 545. MR 0010851
  • [10] Wilhelm Flügge, Statik und Dynamik der Schalen, Julius Springer, Berlin, 1934, p. 118.
  • [11] C. B. Biezeno and R. Grammel, Technische Dynamik, Julius Springer, Berlin, 1939, p. 469.
  • [12] S. Timoshenko, Theory of plates and shells, McGraw-Hill Book Co., New York, 1940, p. 440.
  • [13] L. H. Donnell, Stability of thin-walled tubes under torsion, NACA Techn. Rep. No. 479, Washington, D. C., 1933.
  • [14] S. B. Batdorf, A simplified method of elastic stability analysis for thin cylindrical shells, NACA Techn. Rep. No. 874, Washington, D. C., 1947. MR 0032403

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.2X

Retrieve articles in all journals with MSC: 73.2X

Additional Information

DOI: https://doi.org/10.1090/qam/59156
Article copyright: © Copyright 1954 American Mathematical Society

American Mathematical Society