Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

On some effects of velocity distribution in electron streams


Author: S. V. Yadavalli
Journal: Quart. Appl. Math. 12 (1954), 105-116
MSC: Primary 78.0X
DOI: https://doi.org/10.1090/qam/64633
MathSciNet review: 64633
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Based on the Liouville theorem an integral equation is obtained for the solution of electron beam problems having a velocity spread. Assuming a rectangular velocity distribution (which is justified later) the integral equation is solved by Laplace Transforms to obtain the solution of the problems of small-signal velocity modulation in a drifting electron stream, and a drifting electron stream initially possessing full shot noise in each velocity class.


References [Enhancements On Off] (What's this?)

  • [1] D. Bohm and E. P. Gross, Phy. Rev. 75, 1851. (1949); 75, 1869 (1949); 79, 992 (1950).
  • [2] A. Vlasov, On the kinetic theory of an assembly of particles with collective interaction, Acad. Sci. USSR. J. Phys. 9 (1945), 25–40 (French). MR 0013071
  • [3] L. Landau, On the vibrations of the electronic plasma, Acad. Sci. USSR. J. Phys. 10 (1946), 25–34. MR 0023765
  • [4] D. A. Watkins, J.A.P. 23, 568 (1952).
  • [5] David Bohm and David Pines, A collective description of electron interactions. II. Collective vs individual particle aspects of the interactions, Phys. Rev. (2) 85 (1952), 338–353. MR 0102331
  • [6] W. C. Hahn, G.E. Rev. 42, 258 (1939).
  • [7] S. Ramo, Phy. Rev. 56, 256 (1939).
  • [8] J. R. Pierce, Proc. I.R.E. 40, 1675 (1952).
  • [9] S. V. Yadavalli, Tech. Report Ser. No. 1, Issue No. 64, Electronics Research Laboratory, University of California, Berkeley.
  • [10] Ivar Fredholm, Sur une classe d’équations fonctionnelles, Acta Math. 27 (1903), no. 1, 365–390 (French). MR 1554993, https://doi.org/10.1007/BF02421317
  • [11] D. R. Hamilton, J. K. Knipp and J. B. H. Kuper, Klystrons and microwave triodes, Vol. 7, M.I.T. Rad. Lab. Series, McGraw-Hill, 1948, p. 136.
  • [12] F. B. Llewellyn and L. C. Peterson, Proc. I.R.E. 32, 144 (1944).

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 78.0X

Retrieve articles in all journals with MSC: 78.0X


Additional Information

DOI: https://doi.org/10.1090/qam/64633
Article copyright: © Copyright 1954 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website