Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

A new singularity of transonic plane flows


Author: A. R. Manwell
Journal: Quart. Appl. Math. 12 (1955), 343-349
MSC: Primary 76.1X
DOI: https://doi.org/10.1090/qam/66163
MathSciNet review: 66163
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. I. Taylor, Recent work on the flow of comressible fluids, J Lond Math. Soc. 5, 224 (1930). MR 1574079
  • [2] Th. von Kármán Compressibility effects in aerodynamics, J. Aero. Sci. 8, 337-356 (1941). MR 0005848
  • [3] H. S. Tsien, The limiting line in mixed subsonic and supersonic flow of compressible fluids, T.N. 961, N.A.C.A. (1944). MR 0015986
  • [4] A. A. Nikolskii and G. I. Taganov, Gas motion in a local supersonic region and conditions of potential flow breakdown, transl. from Prikl. Mat. Mekh. 10, 481 (1946) by S. Reiss, N.A.C.A. Tech. Mem. 1213. MR 0018072
  • [5] K. O. Friedrichs and D. Flanders, On the non-occurrence of a limiting line in transonic flow, Com. Appl. Math. 1, 287-301 (1948) MR 0029617
  • [6] A. R. Manwell, A note on the hodograph transformation, Quart. Appl. Math. 10, 177-184 (1952). MR 0049021
  • [7] C. S. Morawetz and I. I. Kolodner, On the non-existence of limiting lines in transonic flows, Com. Pure Appl. Math. 6, 97-102 (1953). MR 0055132
  • [8] G. Darboux, Leçons sur la théorie générale des surfaces, vol. 2, Paris, 1915.
  • [9] R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Interscience Publishers, Inc., New York, 1948. MR 0029615
  • [10] E. T. Copson, Theory of function of a complex variable, Oxford, 1935.
  • [11] A. R. Manwell, The variation of compressible flows, Quart. J. Mech. Appl. Math. 7, 40-50 (1954). MR 0060369
  • [12] F. I. Frankl, On the formation of shock waves in subsonic flows with local supersonic velocities, transl. N.A.C.A., T.M. 1251.
  • [13] A. R. Manwell, Expansion in series of the exact solution for compressible flow past a circular or an elliptic cylinder, Phil. Mag. (7) 36, 499-510 (1945). MR 0015991

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76.1X

Retrieve articles in all journals with MSC: 76.1X


Additional Information

DOI: https://doi.org/10.1090/qam/66163
Article copyright: © Copyright 1955 American Mathematical Society

American Mathematical Society