Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On the growth of Taylor-Görtler vortices along highly concave walls

Author: A. M. O. Smith
Journal: Quart. Appl. Math. 13 (1955), 233-262
MSC: Primary 76.0X
DOI: https://doi.org/10.1090/qam/87409
MathSciNet review: 87409
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The primary objective of this study has been to prepare a chart for computing the growth of Taylor-Görtler vortices in laminar flow along walls of both high and low concave curvature. Taylor-Görtler vortices are streamwise vortices having alternate right- and left-hand rotation that may develop in the laminar boundary layer along a concave surface.

References [Enhancements On Off] (What's this?)

  • [1] S. Goldstein, Modern developments in fluid dynamics, vol. 1, Clarendon Press, Oxford, 1938
  • [2] Lord Rayleigh, On the dynamics of revolving fluids, Proc. Roy. Soc. (London) A(93), 148-154 (1917)
  • [3] G. I. Taylor, Stability of a viscous liquid contained between two rotating cylinders, Phil. Trans. Roy. Soc. (London) A(223) 289-343 (1923)
  • [4] H. Görtler, Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden, Ges. d. Wiss. Göttingen, Nachr. a. d., Math., 2, No. 1 (1940)
  • [5] H. W. Liepmann, Investigation of boundary layer transition on concave walls, NACA Wartime Report ACR No. 4J28, Feb. 1945
  • [6] W. W. Hagerty, Use of an optical property of glycerine-water solutions to study viscous fluid-flow problems, J. Appl. Mech. 17, 54-58 (1950)
  • [7] D. Meksyn, Stability of viscous flow over concave cylindrical surfaces, Proc. Roy. Soc. London. Ser. A. 203 (1950), 253–265. MR 0038774, https://doi.org/10.1098/rspa.1950.0138
  • [8] W. J. Duncan, Galerkin's method in mechanics and differential equations, British Reports and Memoranda No. 1798, (1937)
  • [9] A. M. O. Smith, Improved solutions of the Falkner and Skan boundary layer equation, Sherman Fair-child Fund Paper No. FF-10, Inst. Aeronaut. Sci. (1954)
  • [10] R. A. Frazer, W. J. Duncan, A. R. Collar, Elementary matrices, Cambridge University Press, Cambridge, 1950
  • [11] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
  • [12] E. J. Richards, W. S. Walker, J. R. Greening, Tests of a Griffith Aerofoil in the $ 13ft. \times 9ft.$. wind tunnel, British Reports and Memoranda No. 2148, March 1944 A personal communication from the N.P.L. supplied much additional and more detailed data than available in the R & M. Furthermore, the factor 1.36, page 9 of R & M 2148 was changed to the correct value 0.54
  • [13] Günther Hämmerlin, Über das Eigenwertproblem der dreidimensionalen Instabilität laminarer Grenzschichten an konkaven Wänden, J. Rational Mech. Anal. 4 (1955), 279–321 (German). MR 0068387

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76.0X

Retrieve articles in all journals with MSC: 76.0X

Additional Information

DOI: https://doi.org/10.1090/qam/87409
Article copyright: © Copyright 1955 American Mathematical Society

American Mathematical Society