SOLUTIONS OF THE HYPER-BESSEL EQUATION*

BY CHIA-SHUN YIH, (State University of Iowa)

In problems of hydrodynamic stability involving axial symmetry, it is sometimes necessary to find the solutions of a differential equation of the type

\[L_n^f = 0 \]

in which \(n \) is a positive integer, and (with \(D \equiv d/dr \))

\[L_1 = D^2 + r^{-1}D - r^{-2} - \lambda^2 \]

is the Bessel operator of the first order. In this note, solutions of the equation \(L_n^f = 0 \) (1)

in which

\[L_n = D^2 + r^{-1}D - p^2r^{-2} + k^2 \]

will be given explicitly. The theorem one seeks to establish is the following: If \(p \) (taken to be positive for convenience) is not an integer, the solutions of Eq. (1) are \(r^m J_{n+p+m}(kr) \) in which \(m = 0, 1, 2, \cdots, n - 1 \); otherwise they are \(r^m J_{n+p+m}(kr) \) and \(r^m N_{n+p+m}(kr) \), with \(m \) ranging over the same integers. The symbols \(J \) and \(N \) stand for the Bessel function and the Neumann function, respectively.

Proof: It is known that the solutions of \(L_n^f = 0 \) are \(J_{n+p}(kr) \) for \(p \) not equal to an integer and \(J_n(kr) \) and \(N_n(kr) \) for \(p \) equal to an integer. Thus it suffices to show that if \(r^sZ_{n+s}(kr) \) (in which \(Z \) stands for either \(J \) or \(N \)) satisfies \(L^s+1 = 0 \), then \(r^sZ_{n+s+1}(kr) \) satisfies \(L^s+1 f = 0 \), since the proof for \(r^mJ_{n+p+m}(kr) \) is identical with that for \(r^mN_{n+p+m}(kr) \). This will be accomplished if one can show that \(L_n r^s Z_{n+s+1}(kr) \) is equal to a constant times \(r^s Z_{n+s}(kr) \). By straightforward differentiation one has

\[L_n r^{s+1}Z_{n+s+1}(kr) = r^{s+1}L_n Z_{n+s+1}(kr) + s(s + 1)r^{s-1}Z_{n+s+1}(kr) \]

\[+ 2(s + 1)r^s D Z_{n+s+1}(kr) + (s + 1) r^{s-1} Z_{n+s+1}(kr) = r^{s+1}L_n Z_{n+s+1}(kr) + (s + 1) r^{s-1} Z_{n+s+1}(kr) \]

\[+ 2(s + 1)r^s D Z_{n+s+1}(kr). \]

But

\[L_n = L_{n+1} + \frac{2p(s + 1) + (s + 1)^2}{r^2} \]

and [1]

\[D Z_{n+s+1}(kr) = k \left[- \frac{s + 1}{kr} Z_{n+s+1}(kr) + Z_{n+s+1}(kr) \right]. \]

*Received May 14, 1955.
So

\[L_{p+1} Z_{p+1}(kr) = r^{p+1} L_{p+1} Z_{p+1}(kr) + [2p(s + 1) + (s + 1)^2] r^{p-1} L_{p+1} Z_{p+1}(kr) \]

\[+ (s + 1)^2 r^{p-1} Z_{p+1}(kr) + 2(s + 1) r^p \left[- \frac{p + s + 1}{kr} Z_{p+1}(kr) + Z_{p+1}(kr) \right] \]

\[= 2(s + 1) r^p Z_{p+1}(kr) \]

since

\[L_{p+1} Z_{p+1}(kr) = 0 \]

by definition of Z.

Dr. Y. C. Fung of the California Institute of Technology communicated to the writer a different proof of the present result by means of Almansi's theorem [2] on hyperharmonic functions. His proof will not be presented here.

It may be noted that since [1]

\[Z_{p-1}(kr) + Z_{p+1}(kr) = \frac{2p}{kr} Z_p(kr) \quad (2) \]

and since by the theorem just proved \(rZ_{p+1}(kr) \) and \(Z_p(kr) \) are solutions of

\[L^2 f = 0, \quad (3) \]

it follows from Eq. (2) that \(rZ_{p-1}(kr) \) is also a solution of Eq. (3). In fact, by repeated use of Eq. (2) and a similar one obtained by changing \(p \) to \(-p \) in Eq. (2), it can be proved that if the \(m \) in the subscripts of the solutions given in the theorem is changed to \(-m \), the results will still be solutions of Eq. (1). These solutions are of course not independent of the ones given in the statement of the theorem.

REFERENCES

[2] E. Almansi, Sull' integrazione dell' equazione differenziale \(\Delta u = 0 \), Annali di Matimatica, (III) 2 (1899)