Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Two dimensional sink flow of a viscous, heat-conducting, compressible fluid; cylindrical shock waves


Author: T. Yao-Tsu Wu
Journal: Quart. Appl. Math. 13 (1956), 393-418
MSC: Primary 76.0X
DOI: https://doi.org/10.1090/qam/74225
MathSciNet review: 74225
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Y. T. Wu, Two dimensional sink flow of a viscous, heat-conducting compressible fluid; cylindrical shock waves, Hydrodynamics Laboratory Report No. 21-16, California Institute of Technology, California (1954)
  • [2] F. Ringleb, Exact solutions of the differential equations of an adiabatic gas flow, Ministry of Aircraft Production, Great Britain, R. T. P. Translation 1609 (1942)
  • [3] Robert V. Hess, A solution of the Navier-Stokes equations for source and sink flows of a viscous heat-conducting compressible fluid, Tech. Notes Nat. Adv. Comm. Aeronaut., 1952 (1952), no. 2630, 60 pp. (3 plates). MR 0047450
  • [4] Akira Sakurai, On the theory of cylindrical shock wave, J. Phys. Soc. Japan 4 (1949), 199–202. MR 0038798, https://doi.org/10.1143/JPSJ.4.199
  • [5] H. C. Levey, Two dimensional source flow of a viscous fluid, Quart. Appl. Math. 12 (1954), 25–48. MR 0063859, https://doi.org/10.1090/S0033-569X-1954-63859-0
  • [6] J. G. Kirkwood, F. P. Buff, and M. S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids, J. Chem. Phys. 17, 988 (1949)
  • [7] E. Kamke, Differentialgleichungen reeller Funktionen, Chelsea Publishing Company, New York, N.Y., 1947 (German). MR 0020179
  • [8] J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, Inc., New York, N.Y., 1950. MR 0034932
  • [9] Tables of Bessel functions of fractional order, Vol. I, II, National Bureau of Standards, Columbia University Press, 1949
  • [10] R. von Mises, On the thickness of a steady shock wave, J. Aeronaut. Sci. 17 (1950), 551–554. MR 0037691
  • [11] S. Chapman and T. G. Cowling, The mathematical theory of non-uniform, gases, Cambridge University Press, 1939
  • [12] R. C. Tolman and P. C. Fine, On the irreversible production of entropy, Rev. Modern Phys. 20, No. 1, 51-77 (1948)
  • [13] Charles F. Curtiss and Joseph O. Hirschfelder, The thermodynamics of flow systems, J. Chem. Phys. 18 (1950), 171–173. MR 0033668, https://doi.org/10.1063/1.1747581

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76.0X

Retrieve articles in all journals with MSC: 76.0X


Additional Information

DOI: https://doi.org/10.1090/qam/74225
Article copyright: © Copyright 1956 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website