Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Linear programming and plastic limit analysis of structures


Authors: W. S. Dorn and H. J. Greenberg
Journal: Quart. Appl. Math. 15 (1957), 155-167
MSC: Primary 73.2X
DOI: https://doi.org/10.1090/qam/92465
MathSciNet review: 92465
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. J. Greenberg and W. Prager, Limit design of beams and frames, Proc. ASCE 77, Sep. No. 59, (Feb. 1951)
  • [2] A. Charnes and H. J. Greenberg, Plastic collapse and linear programming, abstract presented at Summer Meeting of Amer. Math. Soc., Sept. 1951
  • [3] C. E. Lemke, The dual method of solving the linear programming problem, Naval Res. Logist. Quart. 1 (1954), 36–47. MR 0067582, https://doi.org/10.1002/nav.3800010107
  • [4] J. Nielsen, Vorlesungen über elementare Mechanik, Julius Springer, Berlin, 1935
  • [5] H. J. Greenberg, paper presented at Second Symposium on Plasticity, Brown University, April 1949
  • [6] A. Charnes, W. W. Cooper, and A. Henderson, An introduction to linear programming, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0056263
  • [7] George B. Dantzig, Maximization of a linear function of variables subject to linear inequalities, Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, John Wiley & Sons, Inc., New York, N. Y.; Chapman & Hall, Ltd., London, 1951, pp. 339–347. MR 0056260
  • [8] A. Charnes and C. E. Lemke, Computational theory of linear programming I: The ``Bounded variables'' problem, ONR Research memorandum No. 10, Grad. School of Ind. Adm., Carnegie Inst. of Tech., Jan. 1954
  • [9] George B. Dantzig, Upper bounds, secondary constraints, and block triangularity in linear programming, Econometrica 23 (1955), 174–183. MR 0070931, https://doi.org/10.2307/1907876
  • [10] Kurt Eisemann, Linear programming, Quart. Appl. Math. 13 (1955), 209–232. MR 0074102, https://doi.org/10.1090/S0033-569X-1955-74102-9
  • [11] William Orchard-Hays, The RAND code for the simplex method (SX4) (For the IBM 701 electronic computer), The RAND Corp., Research Memo. RM-1440 (7 Feb. 1955)
  • [12] L. Wheaton Smith, Jr., Current status of the industrial use of linear programming, Management Science 2, No. 2, 156-158 (Jan. 1956)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.2X

Retrieve articles in all journals with MSC: 73.2X


Additional Information

DOI: https://doi.org/10.1090/qam/92465
Article copyright: © Copyright 1957 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website