Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Asymptotic solutions of a class of elastic shells of revolution with variable thickness


Authors: C. Nevin De Silva and P. M. Naghdi
Journal: Quart. Appl. Math. 15 (1957), 169-182
MSC: Primary 73.00
DOI: https://doi.org/10.1090/qam/99782
MathSciNet review: 99782
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. Reissner, Spannungen in Kugelschalen (Kuppeln), Festschrift Mueller--Breslau, 181-193 (1912)
  • [2] E. Meissner, Das Elastizitätsproblem dünner Schalen von Ringflächen, Kugel- oder Kegelform, Physikal. Z. 14, 343-349 (1913)
  • [3] E. Meissner, Über Elastizität und Festigkeit düner Schalen, Vierteljahrsschrift der Naturforsch. Gesell. in Zürich 60, 23-27 (1915)
  • [4] John-Erik Ekström, Studien über dünne Schalen von rolationssymmetrischer Form und Belastung mit konstanter oder veränderlicher Wandstärke, Ingenior svetenskapsakademiens Handlingar Nr. 121, Stockholm, 1933
  • [5] M. F. Spotts, Analysis of spherical shells of variable wall thickness, J. Appl. Mech. 6, 97-102 (1939); See also S. Bergmann, Discussion of Reference (5), J. Appl. Mech. 7, 88-89 (1940)
  • [6] E. Reissner, On the theory of thin elastic shells, H. Reissner Anniversary Volume, 231-247, 1949 MR 0030885
  • [7] P. M. Naghdi and C. N. DeSilva, On the deformation of elastic shells of revolution, Quart. Appl. Math. 12, 369-374 (1955) MR 0067693
  • [8] R. E. Langer, On the asymptotic solution of ordinary differential equations, with reference to the Stokes' phenomenon about a singular point, Trans. Am. Math. Soc. 37, 397-416 (1935) MR 1501793
  • [9] P. M. Naghdi and C. N. DeSilva, Deformation of elastic ellipsoidal shells of revolution, Proc. 2nd U. S. Natl. Congr. Appl. Mech. 333-343 (1955) MR 0076557
  • [10] P. M. Naghdi, The effect of transverse shear deformation on the bending of elastic shells of revolution, to appear in Quart. Appl. Math. MR 0098502
  • [11] R. A. Clark, On the theory of thin elastic toroidal shells, J. Math. Phys. 29, 146-178 (1950) MR 0039491

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.00

Retrieve articles in all journals with MSC: 73.00


Additional Information

DOI: https://doi.org/10.1090/qam/99782
Article copyright: © Copyright 1957 American Mathematical Society

American Mathematical Society