Stability limits for a clamped spherical shell segment under uniform pressure

Author:
Robert R. Archer

Journal:
Quart. Appl. Math. **15** (1958), 355-366

MSC:
Primary 73.00

DOI:
https://doi.org/10.1090/qam/98515

MathSciNet review:
98515

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An integration procedure for the differential equations for the finite deflections of clamped shallow spherical shells under uniform pressure is developed. Stability limits for the clamped shell are obtained for a range of the central height to thickness ratio from about 1 to 35. This serves to correct and extend previously known stability limits for this problem.

**[1]**Robert Raymond Archer,*ON THE POST BUCKLING BEHAVIOR OF THIN SPHERICAL SHELLS*, ProQuest LLC, Ann Arbor, MI, 1956. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR**2938819****[2]**C. B. Biezeno,*Über die Bestimmung der ``Durchschlagkraft'' einer schwachgekrümmten, kreisförmigen Platte*, Z.A.M.M.**15**, 10-22 (1935)**[3]**V. I. Feodosev,*On the stability of a spherical shell under the action of an external uniform pressure*, (in Russian), Prikl. Mat. Mek. (1)**18**, 35-42 (1954)**[4]**K. O. Friedrichs,*On the minimum buckling load for spherical shells*, Theodore von Kármán Anniversary Volume, California Institute of Technology, Pasadena, Calif., 1941, pp. 258–272. MR**0004599****[5]**A. Kaplan and Y. C. Fung,*A nonlinear theory of bending and buckling of thin elastic shallow spherical shells*, NACA Tech. Note**1954**(1954), no. 3212, 58. MR**0063245****[6]**H. M. Muštari and R. G. Surkin,*On the nonlinear theory of the stability of elastic equilibrium of a thin spherical shell under the action of a uniformly distributed normal external pressure*, Akad. Nauk SSSR. Prikl. Mat. Meh.**14**(1950), 573–586 (Russian). MR**0048285****[7]**Eric Reissner,*Stresses and small displacements of shallow spherical shells. II*, J. Math. Phys. Mass. Inst. Tech.**25**(1947), 279–300. MR**0019028**, https://doi.org/10.1002/sapm1946251279**[8]**Eric Reissner,*On axisymmetrical deformations of thin shells of revolution*, Proc. Symposia Appl. Math. v. 3, McGraw-Hill Book Co., New York, N. Y., 1950, pp. 27–52. MR**0039489****[9]**R. M. Simons,*On the non-linear theory of thin spherical shells*, Ph.D. thesis, M.I.T. Math. Dept., 1955**[10]**Stephen P. Timoshenko,*Theory of elastic stability*, 2nd ed. In collaboration with James M. Gere. Engineering Societies Monographs, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1961. MR**0134026****[11]**S. Timoshenko,*Theory of plates and shells*, McGraw-Hill Book Co., Inc., New York, 1940**[12]**H. S. Tsien,*A theory for the buckling of thin shells*, J. Aeronaut. Sci.**9**, (1940)**[13]**H. S. Tsien,*Lower buckling load in the non-linear buckling theory for thin shells*, Quart. Appl. Math.**5**, 236 (1947)**[14]**M. Uemura and Y. Yoshimura,*The buckling of spherical shells by external pressure II*, (in Japanese), Repts. Inst. Sci. and Technol., Tokyo (6)**6**, 367-371 (1950)**[15]**Th. von Kármán and Hsue-Shen Tsien,*The buckling of spherical shells by external pressure*, J. Aeronaut. Sci.**7**(1939), 43–50. MR**0003177****[16]**Yoshimura Yoshimura and Masuji Uemura,*The buckling of spherical shells due to external pressure*, Rep. Inst. Sci. Tech. Univ. Tokyo**3**(1949), 316–322 (Japanese, with English summary). MR**0038225**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73.00

Retrieve articles in all journals with MSC: 73.00

Additional Information

DOI:
https://doi.org/10.1090/qam/98515

Article copyright:
© Copyright 1958
American Mathematical Society