Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On the application of infinite systems of ordinary differential equations to perturbations of plane Poiseuille flow

Authors: C. L. Dolph and D. C. Lewis
Journal: Quart. Appl. Math. 16 (1958), 97-110
DOI: https://doi.org/10.1090/qam/93242
MathSciNet review: 93242
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] C. C. Lin, The theory of hydrodynamical stability, Cambridge University Press, 1955 MR 0077331
  • [2] G. K. Batchelor, The theory of homogeneous turbulence, Cambridge University Press, 1953 MR 0052268
  • [3] H. Emmons, The laminar-turbulent transition in a boundary layer, J. Aero. Sci. 18, 490-498 (1951) MR 0052931
  • [4] H. Emmons, and A. E. Bryson, The laminar-turbulent transition in a boundary layer, Proc. 1st U.S. Natl. Congr. Appl. Mech., Edwards Bros., Ann Arbor, 1952 MR 0052931
  • [5] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachrichten 4, 213-231 (1950) MR 0050423
  • [6] E. Hopf, A mathematical example displaying features of turbulence, Communs. Pure and Appl. Math. 1, 87-123 (1952) MR 0030113
  • [7] D. C. Lewis, Infinite systems of ordinary differential equations with applications to certain second order partial differential equations, Trans. Am. Math. Soc. 35, 792-823 (1933) MR 1501717
  • [8] C. L. Dolph, Quadratic functionals, quadratic forms, and transition to turbulence, The Ramo-Wooldridge Corp. Rep., 15 June 1955
  • [9] D. C. Lewis, Remarks on the expansion of arbitrary functions in series appropriate to the problem of transition for plane Poiseuille flow, The Ramo-Wooldridge Corp. Rep. No. GM-TM-97 1956
  • [10] L. H. Thomas, The stability of plane Poiseuille flow, Phys. Rev. 91, 780-783 (1953) MR 0057677
  • [11] L. Leppert, A fractional series solution for characteristic values useful in some problems in airplane dynamics, J. Aero. Sci. 22, 326-328 (1955)

Additional Information

DOI: https://doi.org/10.1090/qam/93242
Article copyright: © Copyright 1958 American Mathematical Society

American Mathematical Society