Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Inequalities for eigenvalues of supported and free plates


Author: L. E. Payne
Journal: Quart. Appl. Math. 16 (1958), 111-120
MSC: Primary 73.00
DOI: https://doi.org/10.1090/qam/96440
MathSciNet review: 96440
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn, Studies in eigenvalue problems, Tech. Rep. 3, Oklahoma A. and M. College (1951)
  • [2] N. Aronszajn and W. Donoghue, Studies in eigenvalue problems, Tech. Rep. 12, University of Kansas (1954)
  • [3] R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 1, Berlin, 1931
  • [4] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitz. ber. Bayr. Akad, Wiss., 169 (1923)
  • [5] Tosio Kato, On some approximate methods concerning the operators 𝑇*𝑇, Math. Ann. 126 (1953), 253–262. MR 0058131, https://doi.org/10.1007/BF01343163
  • [6] E. T. Kornhauser and I. Stakgold, A variational theorem for ∇²𝑢+𝜆𝑢=0 and its applications, J. Math. Physics 31 (1952), 45–54. MR 0047236
  • [7] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94, 97 (1924)
  • [8] Yoshimoto Nakata and Hiroshi Fujita, On upper and lower bounds of the eigenvalues of a free plate, J. Phys. Soc. Japan 10 (1955), 823–824. MR 0075780, https://doi.org/10.1143/JPSJ.10.823
  • [9] L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rational Mech. Anal. 4 (1955), 517–529. MR 0070834
  • [10] L. E. Payne and H. F. Weinberger, Two inequalities for eigenvalues of membranes, Tech. Note BN-65, Univ. of Maryland (1955)
  • [11] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486
  • [12] Franz Rellich, Darstellung der Eigenwerte von Δ𝑢+𝜆𝑢=0 durch ein Randintegral, Math. Z. 46 (1940), 635–636 (German). MR 0002456, https://doi.org/10.1007/BF01181459
  • [13] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954), 343–356. MR 0061749
  • [14] H. F. Weinberger, An isoperimetric inequality for the 𝑁-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633–636. MR 0079286
  • [15] A. Weinstein, Étude des spectres des équations aux dérivées partielles de la théorie des plaques élastiques, Mémorial de Sciences Math. 88, Paris (1937)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.00

Retrieve articles in all journals with MSC: 73.00


Additional Information

DOI: https://doi.org/10.1090/qam/96440
Article copyright: © Copyright 1958 American Mathematical Society

American Mathematical Society