Application of conformal mapping to viscous flow between moving circular cylinders

Author:
Lee A. Segel

Journal:
Quart. Appl. Math. **18** (1961), 335-353

MSC:
Primary 76.00; Secondary 82.00

DOI:
https://doi.org/10.1090/qam/120969

MathSciNet review:
120969

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This work shows that conformal mapping provides an effective way to solve certain unsteady two-dimensional perturbation problems involving the flow of a viscous incompressible fluid, in particular flow between moving circular cylinders. If the outer cylinder is considered fixed, the principal motions treated are the slow rotation of a slightly eccentric inner cylinder, and the vibration of an inner cylinder about a slightly eccentric point. Mapping the given circular boundaries (of a cross-section) into concentric circles enables one to solve for the stream function by means of a series.

**[1]**J. Andres and U. Ingard,*Acoustic streaming at low Reynold's numbers*, J. Acoust. Soc. Amer.**25**, 932-8(1953)**[2]**S. Goldstein, Ed.,*Modern developments in fluid dynamics*, Clarendon Press, Oxford, 1938**[3]**G. Kirchoff, Pogg. Ann.**94**(1845), as in*Ges. Abhandl*.**1**, Leipzig, 1882**[4]**H. Kober,*Dictionary of conformal representation*, Dover, N. Y., 1952 MR**0049326****[5]**C. C. Lin,*On a perturbation theory based on the method of characteristics*, J. Math. Phys.**33**, 132-3 (1954) MR**0063884****[6]**H. Martin,*Über Tonhöhe und Dämpfung der Schwingungen von Saiten in verschiedenen Flüssigkeiten*, Ann. Phys. (4)**77**, 627-57 (1925)**[7]**P. Morse and H. Feshbach,*Methods of theoretical physics*, McGraw-Hill, N. Y., 1953 MR**0059774****[8]**A. Nikitin,*O dviženii vyazkoľ židkosti meždu ščipom i podšipnikom*, (*On the flow of a viscous fluid between pin and bearing*), In ženernyľ Sbornik**23**, 173-85 (1956) MR**0081715****[9]**L. A. Segel,*Applications of conformal mapping to boundary perturbation problems*, Ph.D. Thesis, M. I. T. Math. Dept., 1959 MR**2939170****[10]**L. A. Segel,*Application of conformal mapping to boundary perturbation problems for the membrane equation*, to be published**[11]**G. Stokes,*On the effect of the internal friction of fluids on the motion of pendulums*, Math, and Phys. Papers 3, The University Press, Cambridge, 1901, pp. 38-54**[12]**J. T. Stuart, Chap. VII of*Laminar boundary layers*, to be published by the Clarendon Press, Oxford, 1960/61**[13]**J. T. Stuart and L. Woodgate,*Experimental determination of the aerodynamic damping on a vibrating circular cylinder*, Phil. Mag.**46**, 40-46 (1955)**[14]**W. Vinen,*Detection of single quanta of circulation in rotating Helium II*, Nature**181**, 1524-5 (1958)**[15]**W. W. Wood,*The asymptotic expansions at large Reynolds numbers for steady motion between non-coaxial rotating cylinders*, J. Fluid Mechanics**3**, 159-75 (1957) MR**0092504****[16]**E. Whittaker and G. Watson,*Modern analysis*, The University Press, Cambridge, 1952

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76.00,
82.00

Retrieve articles in all journals with MSC: 76.00, 82.00

Additional Information

DOI:
https://doi.org/10.1090/qam/120969

Article copyright:
© Copyright 1961
American Mathematical Society