A note on an inverse problem in mathematical physics

Authors:
Richard Bellman and John M. Richardson

Journal:
Quart. Appl. Math. **19** (1961), 269-271

MSC:
Primary 34.30

DOI:
https://doi.org/10.1090/qam/130417

MathSciNet review:
130417

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**G. Borg,*Eine Umkehrung der Sturm-Liouvilleschen Eigenwerte Aufgabe*, Acta Math.**78**, 1-96 (1946) MR**0015185****[2]**I. M. Gelfand and B. M. Levitan,*On the determination of a differential equation from its spectral function*, Trans. Amer. Math. Soc.**2**, 253-304 (1955) MR**0073805****[3]**I. Kay,*The inverse scattering problem when the reflection coefficient is a rational function*, Communs. Pure Appl. Math.**13**, 371-406 (1960) MR**0114540****[4]**E. A. Guillemin,*A summary of modern methods of network synthesis*, Advances in Electronics, Academic Press Inc., vol. 3, 1951, pp. 261-303**[5]**L. Weinberg,*Linear network synthesis*, McGraw-Hill Book Co., Inc., New York, to appear**[6]**L. Weinberg and P. Slepian,*Realizability conditions on n-port networks*, IRE Trans. on Circuit Theory,**CT-5**, 217-221 (1958)**[7]**E. Wigner,*On a class of analytic functions from the quantum theory of collisions*, Ann. Math.**53**, 36-67 (1951) MR**0039059****[8]**A. M. Lane and R. G. Thomas,*R-matrix theory of nuclear reactions*, Revs. Mod. Phys.**30**, 257-352 (1958) MR**0097255**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
34.30

Retrieve articles in all journals with MSC: 34.30

Additional Information

DOI:
https://doi.org/10.1090/qam/130417

Article copyright:
© Copyright 1961
American Mathematical Society