Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the nonlinear theory of elastic shells under the Kirchhoff hypothesis


Authors: P. M. Naghdi and R. P. Nordgren
Journal: Quart. Appl. Math. 21 (1963), 49-59
MSC: Primary 73.53
DOI: https://doi.org/10.1090/qam/145743
MathSciNet review: 145743
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. L. Synge and W. Z. Chien, The intrinsic theory of elastic shells and plates, Th. v. Karman Anniv. Vol., 103, 1941 MR 0004596
  • [2] W. Z. Chien, The intrinsic theory of thin shells and plates, Quart. Appl. Math. 1 (1944) 297; 2 (1944) 43 and 120
  • [3] P. M. Naghdi, A survey of recent progress in the theory of elastic shells, Appl. Mech. Reviews 9 (1956) 365
  • [4] J. L. Ericksen and C. Truesdell, Exact theory of stress and strain in rods and shells, Arch. Ratl. Mech. Anal. 1 (1958) 295 MR 0099135
  • [5] V. V. Novozhilov, Foundations of the nonlinear theory of elasticity (translated from the first 1948 Russian edition), Graylock Press, 1953. MR 0054465
  • [6] E. Reissner, On the theory of thin elastic shells, H. Reissner Anniversary Volume, J. W. Edwards, Ann Arbor, Mich., 231, 1949 MR 0030885
  • [7] E. Reissner, On axisymmetrical deformations of shells of revolution, Proc. Symposia Appl. Math. 3 (1950) 27 MR 0039489
  • [8] J. L. Sanders, Jr., Nonlinear theories of thin shells, Tech. Rept. No. 10, Contract Nonr 1866(02), Harvard University, 1961
  • [9] R. W. Leonard, Nonlinear first approximation thin shell and membrane theory, NASA, 1961, to appear.
  • [10] P. M. Naghdi, Foundations of elastic shell theory, Tech. Rept. No. 15, Contract Nonr 222(69), University of California, Berkeley, to appear MR 0163488
  • [11] A. E. Green and W. Zerna, Theoretical elasticity, Oxford, Clarendon Press, 1954 MR 0064598
  • [12] R. S. Rivlin and J. L. Ericksen, Stress-deformation relations for isotropic materials, J. Ratl. Mech. Anal. 4 (1955) 323 MR 0068413
  • [13] R. S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, J. Ratl. Mech. Anal. 4 (1955) 681 MR 0071980
  • [14] C. Truesdell and R. Toupin, The classical field theories, Handbuch der Physik III/1, 226, 1960 MR 0118005
  • [15] A. E. Green and J. E. Adkins, Large elastic deformations, Oxford, Clarendon Press, 1960 MR 0269158

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.53

Retrieve articles in all journals with MSC: 73.53


Additional Information

DOI: https://doi.org/10.1090/qam/145743
Article copyright: © Copyright 1963 American Mathematical Society

American Mathematical Society