Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

On the nonlinear theory of elastic shells under the Kirchhoff hypothesis


Authors: P. M. Naghdi and R. P. Nordgren
Journal: Quart. Appl. Math. 21 (1963), 49-59
MSC: Primary 73.53
DOI: https://doi.org/10.1090/qam/145743
MathSciNet review: 145743
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. L. Synge and W. Z. Chien, The intrinsic theory of elastic shells and plates, Theodore von Kármán Anniversary Volume, University of California Press, Berkeley, Calif., 1941, pp. 103–120. MR 0004596
  • [2] W. Z. Chien, The intrinsic theory of thin shells and plates, Quart. Appl. Math. 1 (1944) 297; 2 (1944) 43 and 120
  • [3] P. M. Naghdi, A survey of recent progress in the theory of elastic shells, Appl. Mech. Reviews 9 (1956) 365
  • [4] J. L. Ericksen and C. Truesdell, Exact theory of stress and strain in rods and shells, Arch. Rational Mech. Anal. 1 (1958), 295–323. MR 0099135, https://doi.org/10.1007/BF00298012
  • [5] V. V. Novozhilov, Foundations of the nonlinear theory of elasticity, Graylock Press, Rochester, N. Y., 1953. MR 0054465
  • [6] Eric Reissner, On the theory of thin elastic shells, Reissner Anniversary Volume, Contributions to Applied Mechanics, J. W. Edwards, Ann Arbor, Michigan, 1948, pp. 231–247. MR 0030885
  • [7] Eric Reissner, On axisymmetrical deformations of thin shells of revolution, Proc. Symposia Appl. Math. v. 3, McGraw-Hill Book Co., New York, N. Y., 1950, pp. 27–52. MR 0039489
  • [8] J. L. Sanders, Jr., Nonlinear theories of thin shells, Tech. Rept. No. 10, Contract Nonr 1866(02), Harvard University, 1961
  • [9] R. W. Leonard, Nonlinear first approximation thin shell and membrane theory, NASA, 1961, to appear.
  • [10] P. M. Naghdi, Foundations of elastic shell theory, Progress in Solid Mechanics, Vol. IV, North-Holland, Amsterdam, 1963, pp. 1–90. MR 0163488
  • [11] A. E. Green and W. Zerna, Theoretical elasticity, Oxford, at the Clarendon Press, 1954. MR 0064598
  • [12] R. S. Rivlin and J. L. Ericksen, Stress-deformation relations for isotropic materials, J. Rational Mech. Anal. 4 (1955), 323–425. MR 0068413
  • [13] R. S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, J. Rational Mech. Anal. 4 (1955), 681–702. MR 0071980
  • [14] C. Truesdell and R. Toupin, The classical field theories, Handbuch der Physik, Bd. III/1, Springer, Berlin, 1960, pp. 226–793; appendix, pp. 794–858. With an appendix on tensor fields by J. L. Ericksen. MR 0118005
  • [15] A. E. Green and J. E. Adkins, Large elastic deformations, Second edition, revised by A. E. Green, Clarendon Press, Oxford, 1970. MR 0269158

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73.53

Retrieve articles in all journals with MSC: 73.53


Additional Information

DOI: https://doi.org/10.1090/qam/145743
Article copyright: © Copyright 1963 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website