Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Singular cases in the optimum design of frames


Authors: George J. Megarefs and Philip G. Hodge Jr.
Journal: Quart. Appl. Math. 21 (1963), 91-103
DOI: https://doi.org/10.1090/qam/152358
MathSciNet review: 152358
Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Many previous studies in optimum design have determined the parameters so as to set equal to zero the first variation of the property to be optimized. The present paper shows that in some simple cases the minimum value may not be a point of zero variation and that points of zero variation may be relative maxima as well as minima. A general theoretical explanation of such behavior is given and applications are made to simple frames.


References [Enhancements On Off] (What's this?)

  • [1] J. Foulkes, Minimum weight design and the theory of plastic collapse, Q. Appl. Math. 10 (1953) 347
  • [2] J. Foulkes, Minimum weight design of structural frames, Proc. Roy. Soc. (A) 223 (1954) 482 MR 0065379
  • [3] H. G. Hopkins, and W. Prager, Limits of economy of material in plates, J. Appl. Mech. 22 (1955) 372
  • [4] E. T. Onat and W. Prager Limits of economy of material in shells, De Ingenieur 67 (1955) 0.46
  • [5] W. Prager, Minimum, weight design of a portal frame, Proc. ASCE 82 (1956) Paper 1073
  • [6] L. G. Vargo, Non-linear minimum weight design of planar structures, J. Aeron. Sc. 23 (1956) 956 MR 0080468
  • [7] D. C. Drucker and R. T. Shield, Design for minimum weight, Proc. 9th Intern. Congr. Appl. Mech., Brussels, 1956.
  • [8] W. Freiberger and B. Tekinlap, Minimum weight design of circular plates, J. Mech. Phys. Sol. 4 (1956) 294 MR 0080466
  • [9] D. C. Drucker and R. T. Shield, Bounds of minimum weight design, Q. Appl. Math. 15 (1957) 269 MR 0090269
  • [10] W. Freiberger, On the minimum weight design problem for cylindrical sandwich shells, J. Aeron. Sc. 24 (1957) 847 MR 0089615
  • [11] T. Onat, W. Schumann and R. T. Shield, Design of circular plates for minimum weight, Z. Ang. Math. Phys. 8 (1957) 485 MR 0093198
  • [12] W. Prager and R. T. Shield, Minimum weight design of circular plates under arbitrary load, Z. ang. Math. Phys. 10 (1959) 421 MR 0108938
  • [13] R. T. Shield, Plate design for minimum weight, Q. Appl. Math. 18 (1960) 131 MR 0112409
  • [14] R. T. Shield, On the optimum design of shells, J. Appl. Mech. 27 (1960) 316 MR 0112410
  • [15] J. Heyman, On the absolute minimum weight design of framed structures, Q. J. Mech. Appl. Math. 12 (1959) 314 MR 0126989
  • [16] J. Heyman, On the minimum weight design of a simple portal frame, Int. J. Mech. Sc. 1 (1960) 121
  • [17] T. C. Hu and R. T. Shield, Uniqueness in the optimum design of structures, J. Appl. Mech. 28 (1961) 284 MR 0122124
  • [18] Z. Mróz, On a problem of minimum weight design, Q. Appl. Math. 19 (1961) 127 MR 0135327
  • [19] W. Prager, An introduction to plasticity, Addison-Wesley, 1959, Ch. 2 MR 0105910
  • [20] T. Pierpont, The theory of functions of real variables, Vol. 1, Dover, 1959, p. 387 ff.


Additional Information

DOI: https://doi.org/10.1090/qam/152358
Article copyright: © Copyright 1963 American Mathematical Society

American Mathematical Society