Singular cases in the optimum design of frames

Authors:
George J. Megarefs and Philip G. Hodge Jr.

Journal:
Quart. Appl. Math. **21** (1963), 91-103

DOI:
https://doi.org/10.1090/qam/152358

MathSciNet review:
152358

Full-text PDF Free Access

Abstract | References | Additional Information

Abstract: Many previous studies in optimum design have determined the parameters so as to set equal to zero the first variation of the property to be optimized. The present paper shows that in some simple cases the minimum value may not be a point of zero variation and that points of zero variation may be relative maxima as well as minima. A general theoretical explanation of such behavior is given and applications are made to simple frames.

**[1]**J. Foulkes,*Minimum weight design and the theory of plastic collapse*, Q. Appl. Math.**10**(1953) 347**[2]**J. Foulkes,*Minimum weight design of structural frames*, Proc. Roy. Soc. (A)**223**(1954) 482 MR**0065379****[3]**H. G. Hopkins, and W. Prager,*Limits of economy of material in plates*, J. Appl. Mech.**22**(1955) 372**[4]**E. T. Onat and W. Prager*Limits of economy of material in shells*, De Ingenieur**67**(1955) 0.46**[5]**W. Prager,*Minimum, weight design of a portal frame*, Proc. ASCE**82**(1956) Paper 1073**[6]**L. G. Vargo,*Non-linear minimum weight design of planar structures*, J. Aeron. Sc.**23**(1956) 956 MR**0080468****[7]**D. C. Drucker and R. T. Shield,*Design for minimum weight*, Proc. 9th Intern. Congr. Appl. Mech., Brussels, 1956.**[8]**W. Freiberger and B. Tekinlap,*Minimum weight design of circular plates*, J. Mech. Phys. Sol.**4**(1956) 294 MR**0080466****[9]**D. C. Drucker and R. T. Shield,*Bounds of minimum weight design*, Q. Appl. Math.**15**(1957) 269 MR**0090269****[10]**W. Freiberger,*On the minimum weight design problem for cylindrical sandwich shells*, J. Aeron. Sc.**24**(1957) 847 MR**0089615****[11]**T. Onat, W. Schumann and R. T. Shield,*Design of circular plates for minimum weight*, Z. Ang. Math. Phys.**8**(1957) 485 MR**0093198****[12]**W. Prager and R. T. Shield,*Minimum weight design of circular plates under arbitrary load*, Z. ang. Math. Phys.**10**(1959) 421 MR**0108938****[13]**R. T. Shield,*Plate design for minimum weight*, Q. Appl. Math.**18**(1960) 131 MR**0112409****[14]**R. T. Shield,*On the optimum design of shells*, J. Appl. Mech. 27 (1960) 316 MR**0112410****[15]**J. Heyman,*On the absolute minimum weight design of framed structures*, Q. J. Mech. Appl. Math.**12**(1959) 314 MR**0126989****[16]**J. Heyman,*On the minimum weight design of a simple portal frame*, Int. J. Mech. Sc.**1**(1960) 121**[17]**T. C. Hu and R. T. Shield,*Uniqueness in the optimum design of structures*, J. Appl. Mech.**28**(1961) 284 MR**0122124****[18]**Z. Mróz,*On a problem of minimum weight design*, Q. Appl. Math.**19**(1961) 127 MR**0135327****[19]**W. Prager,*An introduction to plasticity*, Addison-Wesley, 1959, Ch. 2 MR**0105910****[20]**T. Pierpont,*The theory of functions of real variables*, Vol. 1, Dover, 1959, p. 387 ff.

Additional Information

DOI:
https://doi.org/10.1090/qam/152358

Article copyright:
© Copyright 1963
American Mathematical Society