Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Oscillations of a pendulum under parametric excitation

Author: Raimond A. Struble
Journal: Quart. Appl. Math. 21 (1963), 121-131
DOI: https://doi.org/10.1090/qam/153149
MathSciNet review: 153149
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. Skalak and M. I. Yarymovych, Subharmonic oscillations of a pendulum, J. Appl. Mech. 27, 159-164, (1960) MR 0109457
  • [2] R. A. Struble and J. E. Fletcher, General perturbational solution of the harmonically forced van der Pol equation, J. Math. Phys., 2, 880-891 (1961) MR 0136824
  • [3] R. A. Struble and S. M. Yionoulis, General perturbational solution of the harmonically forced Duffing equation, Arch. Rat. Mech. Anal. 9, 422-438 (1962) MR 0136813
  • [4] R. A. Struble: Nonlinear differential equations, McGraw-Hill Book Co. (1962), Chapter 8. MR 0130408
  • [5] N. Bogoliubov and I. Mitropolsky, Asymptotic methods in the theory of nonlinear $ ^{O}$scillations, Gos. Izd. Fiz. Mat., Moscow, 1955
  • [6] P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for physicists and engineers, Springer-Verlag, Berlin, 1954. MR 0060642

Additional Information

DOI: https://doi.org/10.1090/qam/153149
Article copyright: © Copyright 1963 American Mathematical Society

American Mathematical Society