Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

On the Hermite-Fujiwara theorem in stability theory


Author: R. E. Kalman
Journal: Quart. Appl. Math. 23 (1965), 279-282
MSC: Primary 30.10
DOI: https://doi.org/10.1090/qam/190299
MathSciNet review: 190299
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. R. Ragazzini and G. F. Franklin, Sampled-data control systems, McGraw-Hill, N. Y., 1958
  • [2] M. Fujiwara, Über die algebraischen Gleichungen, deren Wurzeln in einem Kreise oder in einer Halbebene liegen, Math. Z. 24 (1926) 160-169 MR 1544753
  • [3] C. Hermite, Sur le nombre des racines d'une équation algèbrique comprises entre des limites donées, Oeuvres 1, 397-114
  • [4] A. Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z. 14 (1922) 110-148 MR 1544543
  • [5] R. E. Kalman and J. E. Bertram, Control system analysis and design via the 'second method' of Lyapunov. II. Discrete-time systems. J. Basic Engr. (Trans. ASME) 82 $ D$ (1960) 394-399 MR 0157811
  • [6] P. C. Parks, Lyapunov and the Schur-Cohn stability criterion, IEEE Trans, on Automatic Control 8 (1964) 121
  • [7] M. Marden, The geometry of the zero of a polynomial in a complex variable, Chapter X, Am. Math Soc., 1949. MR 0031114
  • [8] Olga Taussky, Matrices $ C$ with $ {C^n} \to 0$, J. Algebra, 1 (1964) 5-10 MR 0161865
  • [9] R. E. Kalman, Mathematical description of linear dynamical systems, J. Control (SIAM) 1 (1963) 152-192 MR 0152167
  • [10] R. E. Kalman, On the stability of a polynomial, to appear

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 30.10

Retrieve articles in all journals with MSC: 30.10


Additional Information

DOI: https://doi.org/10.1090/qam/190299
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society