On the formulation and iterative solution of small strain plasticity problems

Author:
Kerry S. Havner

Journal:
Quart. Appl. Math. **23** (1966), 323-335

DOI:
https://doi.org/10.1090/qam/99938

MathSciNet review:
QAM99938

Full-text PDF

Abstract | References | Additional Information

Abstract: This paper is concerned with a general method of formulation and iterative solution of small displacement plasticity problems, using the Hencky-Nadai hardening law as mathematical model for the material behavior. Beginning with a minimum energy principle for small thermal-mechanical strains under simple external loading, quasi-linear partial differential equations are formulated and a method of iteration by successive solutions is proposed. A finite-difference discretization of the equations (in two dimensions) is obtained through minimization of the total potential energy function, leading to positive definite symmetric matrices for general boundary configurations.

**[1]**D. C. Drucker,*Some implications of work hardening and ideal plasticity*, Quart. Appl. Math.**7**(1950), 411–418. MR**0034210**, https://doi.org/10.1090/S0033-569X-1950-34210-6**[2]**D. C. Drucker,*A more fundamental approach to plastic stress-strain relations*, Proceedings of the First U. S. National Congress of Applied Mechanics, Chicago, 1951, The American Society of Mechanical Engineers, New York, N. Y., 1952, pp. 487–491. MR**0054502****[3]**D. C. Drucker,*A definition of stable inelastic material*, J. Appl. Mech.**26**(1959), 101–106. MR**0104383****[4]**D. C. Drucker,*Plasticity*, Structural mechanics, Pergamon Press, New York, 1960, pp. 407–455. MR**0113398****[5]**V. D. Kliushnikov,*On Plasticity Laws for Work-Hardening Materials*, J. Appl. Math. Mech. (PMM)**22**, 129-160 (1958)**[6]**P. M. Naghdi,*Stress-strain relations in plasticity and thermoplasticity*, Plasticity: Proceedings of the Second Symposium on Naval Structural Mechanics, Pergamon, Oxford, 1960, pp. 121–169. MR**0120830****[7]**J. L. Sanders Jr.,*Plastic stress-strain relations based on linear loading functions*, Proceedings of the Second U. S. National Congress of Applied Mechanics, Ann Arbor, 1954, American Society of Mechanical Engineers, New York, 1955, pp. 455–460. MR**0079421****[8]**Bernard Budiansky,*A reassessment of deformation theories of plasticity*, J. Appl. Mech.**26**(1959), 259–264. MR**0103653****[9]**V. D. Kljušnikov,*On a possible manner of establishing the plasticity relations*, J. Appl. Math. Mech.**23**(1959), 405–418. MR**0115425**, https://doi.org/10.1016/0021-8928(59)90096-6**[10]**V. D. Kljušnikov,*New concepts in plasticity and deformation theory*, J. Appl. Math. Mech.**23**(1959), 1030–1042. MR**0115418**, https://doi.org/10.1016/0021-8928(59)90037-1**[11]**Bernard Budiansky and O. L. Mangasarian,*Plastic stress concentration at a circular hole in an infinite sheet subjected to equal biaxial tension*, J. Appl. Mech.**27**(1960), 59–64. MR**0110326****[12]**O. L. Mangasarian,*Stresses in the plastic range around a normally loaded circular hole in an infinite sheet*, J. Appl. Mech.**27**(1960), 65–73. MR**0110327****[13]**H. J. Greenberg, W. S. Dorn, and E. H. Wetherell,*A comparison of flow and deformation theories in plastic torsion of a square cylinder*, Plasticity: Proceedings of the Second Symposium on Naval Structural Mechanics, Pergamon, Oxford, 1960, pp. 279–296. MR**0118095****[14]**H. J. Greenberg,*On the variational principles of plasticity*, Tech. Rep. A11-S4, Graduate Division of Applied Mathematics, Brown University, Providence, R. I., 1949. MR**0034219****[15]**D. C. Drucker,*Variational principles in the mathematical theory of plasticity*, Calculus of variations and its applications. Proceedings of Symposia in Applied Mathematics, Vol. VIII, McGraw-Hill Book Co., Inc., New York-Toronto-London, for the American Mathematial Society, Providence, R. I., 1958, pp. 7–22. MR**0093122****[16]**L. M. Kachanov,*Variation principles for plastic-elastic solids*, Appl. Math. Mech. [Akad. Nauk SSSR. Prikl. Mat. Mech.]**6**(1942), 187–196 (Russian, with English summary). MR**0007699****[17]**A. A. Ilyushin,*Some problems on the theory of plastic deformations*, Appl. Math. Mech. [Akad. Nauk SSSR. Prikl. Mat. Mech.]**7**(1943), 245–272 (Russian, with English summary). MR**0012040****[18]**A. Mendelson and S. S. Manson,*Practical Solution of Plastic Deformation Problems in Elastic-Plastic Range*, NASA TR R-28 (1959)**[19]**R. Courant, K. Friedrichs, and H. Lewy,*Über die partiellen Differenzengleichungen der mathematischen Physik*, Math. Ann.**100**(1928), no. 1, 32–74 (German). MR**1512478**, https://doi.org/10.1007/BF01448839**[20]**George E. Forsythe and Wolfgang R. Wasow,*Finite-difference methods for partial differential equations*, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR**0130124****[21]**S. D. Conte, K. L. Miller, C. B. Sensenig,*The Numerical Solution of Axisymmetric Problems in Elasticity*, Proc. Fifth Symp. Ballistic Missile and Space Technology, Academic Press, New York,.**4**, 173-202 (1960)**[22]**R. Foye,*The Elastic Characteristics of Variable Thickness Cantilevered Plates*, Rep. NA60H-573,. North American Aviation, Inc., Columbus Div. (1961)**[23]**K. S. Havner,*Solution of Two Variable Thermal and Centrifugal Stress Problems in Cartesian or Cylindrical Geometry*, AiResearch Manufac. Co. Engr. Rept. AM-5505-R, Phoenix, July 1963**[24]**K. S. Havner,*The Finite-Difference Solution of Two Variable Thermal and Mechanical Deformation Problems*, J. Spacecraft and Rockets*2*, 542-549 (1965)**[25]**Donald Greenspan,*On the numerical solution of problems allowing mixed boundary conditions*, J. Franklin Inst.**277**(1964), 11–30. MR**0162370**, https://doi.org/10.1016/0016-0032(64)90035-3**[26]**W. Prager,*On Isotropic Materials with Continuous Transition from Elastic to Plastic State*, Proc. Fifth Int. Cong. Appl. Mech., 234-237 (1939)

Additional Information

DOI:
https://doi.org/10.1090/qam/99938

Article copyright:
© Copyright 1966
American Mathematical Society