Existence of conditionally periodic orbits for the motion of a satellite around the oblate earth

Author:
Richard Barrar

Journal:
Quart. Appl. Math. **24** (1966), 47-55

MSC:
Primary 70.34

DOI:
https://doi.org/10.1090/qam/198723

MathSciNet review:
198723

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The author's previous results on the convergence of the Poincaré-von Zeipel procedure in celestial mechanics are applied to the problem of the motion of a satellite around the oblate earth. The investigation concerns a potential that can vary both longitudinally and latitudinally, and also includes behavior near the critical angle. The existence of conditionally periodic orbits in all these cases is established.

**[1]**R. B. Barrar,*A Proof of the convergence of the Poincaré-von Zeipel procedure in celestial mechanics*, To appear in The American Journal of Mathematics**[2]**D. Brouwer,*Solution of the problem of artificial satellite theory without drag*, Astronomical Journal**64**(1959), pp. 378-397 MR**0128510****[3]**D. Brouwer and G. M. Clemence,*Methods of celestial mechanics*, Academic Press, 1961 MR**0128505****[4]**C. C. Conley,*A disk mapping associated with the satellite problem*, Communications on Pure and Applied Mathematics,**17**(1964), pp. 237-243 MR**0160649****[5]**B. Garfinkel,*On the motion of a satellite in the vicinity of the critical inclination*, The Astronomical Journal**67**(1960), pp. 624-627 MR**0115777****[6]**Y. Hagihara,*Libration of an earth satellite with critical inclination*, Smithsonian Contributions to Astrophysics**5**(1961), pp. 39-51**[7]**G. Hori,*The motion of an artificial satellite in the vicinity of the critical inclination*, The Astronomical Journal**65**(1960), pp. 291-300 MR**0127969****[8]**I. G. Izsak,*On the critical inclination in satellite theory*, Smithsonian Institution Astrophysical Observatory Special Report No. 90, (1962) MR**0170707****[9]**Y. Kozai,*Motion of a particle with critical inclination in the gravitational field of a spheroid*, Smithsonian Contributions to Astrophysics**5**(1961), pp. 53-58**[10]**W. T. Kyner,*Qualitative properties of orbits about an oblate planet*, Communications on Pure and Applied Mathematics**17**(1964), pp. 227-236 MR**0160648****[11]**J. Moser,*On invariant curves of area-preserving mappings of an annulus*, Nachr. Göttingen Math.-Phys. Kl., No. 1, 1962 MR**0147741****[12]**H. Poincaré,*Les méthodes nouvelles de la mécanique céleste*, Vol. I (1892) and Vol. II (1893), Dover Reprint, 1957 MR**0087812****[13]**W. M. Smart,*Celestial mechanics*, Longmans, Green and Company, Inc., 1953 MR**0061934****[14]**C. L. Siegel,*Vorlesungen über Himmelsmechanik*, Section 23, Springer-Verlag, Berlin, 1956 MR**0080009****[15]**G. Springer,*Introduction to Riemann surfaces*, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1957 MR**0092855****[16]**J. P. Vinti,*New method of solution for unretarded satellite orbits*, Journal of Research of the National Bureau of Standards**63B**(1959), pp. 105-116 MR**0108361**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
70.34

Retrieve articles in all journals with MSC: 70.34

Additional Information

DOI:
https://doi.org/10.1090/qam/198723

Article copyright:
© Copyright 1966
American Mathematical Society