Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Existence of conditionally periodic orbits for the motion of a satellite around the oblate earth

Author: Richard Barrar
Journal: Quart. Appl. Math. 24 (1966), 47-55
MSC: Primary 70.34
DOI: https://doi.org/10.1090/qam/198723
MathSciNet review: 198723
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The author's previous results on the convergence of the Poincaré-von Zeipel procedure in celestial mechanics are applied to the problem of the motion of a satellite around the oblate earth. The investigation concerns a potential that can vary both longitudinally and latitudinally, and also includes behavior near the critical angle. The existence of conditionally periodic orbits in all these cases is established.

References [Enhancements On Off] (What's this?)

  • [1] R. B. Barrar, A Proof of the convergence of the Poincaré-von Zeipel procedure in celestial mechanics, To appear in The American Journal of Mathematics
  • [2] Dirk Brouwer, Solution of the problem of artificial satellite theory without drag., Astronom. J. 64 (1959), 378–397. MR 0128510, https://doi.org/10.1086/107958
  • [3] Dirk Brouwer and Gerald M. Clemence, Methods of celestial mechanics, Academic Press, New York-London, 1961. MR 0128505
  • [4] C. C. Conley, A disk mapping associated with the satellite problem, Comm. Pure Appl. Math. 17 (1964), 237–243. MR 0160649, https://doi.org/10.1002/cpa.3160170207
  • [5] Boris Garfinkel, On the motion of a satelliite in the vicinity of the critical inclination, Astr. J. 65 (1960), 624–627. MR 0115777
  • [6] Y. Hagihara, Libration of an earth satellite with critical inclination, Smithsonian Contributions to Astrophysics 5 (1961), pp. 39-51
  • [7] Gen-ichiro Hori, The motion of an artificial satellite in the vicinity of the critical inclination, Astronom. J. 65 (1960), 291–300. MR 0127969, https://doi.org/10.1086/108248
  • [8] I. G. Izsak, On the critical inclination in satellite theory, The Use of Artificial Satellites for Geodesy (Proc. First Internat. Sympos., Washington, D.C., 1962) North-Holland, Amsterdam, 1963, pp. 17–40 (English, with Russian summary). MR 0170707
  • [9] Y. Kozai, Motion of a particle with critical inclination in the gravitational field of a spheroid, Smithsonian Contributions to Astrophysics 5 (1961), pp. 53-58
  • [10] W. T. Kyner, Qualitative properties of orbits about an oblate planet, Comm. Pure Appl. Math. 17 (1964), 227–236. MR 0160648, https://doi.org/10.1002/cpa.3160170206
  • [11] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20. MR 0147741
  • [12] H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome I. Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques, Dover Publications, Inc., New York, N.Y., 1957 (French). MR 0087812
  • [13] W. M. Smart, Celestial mechanics, Longmans, Green and Co., London-New York-Toronto, 1954. MR 0061934
  • [14] Carl Ludwig Siegel, Vorlesungen über Himmelsmechanik, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). MR 0080009
  • [15] George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1957. MR 0092855
  • [16] John P. Vinti, New method of solution for unretarded satellite orbits, J. Res. Nat. Bur. Standards Sect. B 63B (1959), 105–116. MR 0108361

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 70.34

Retrieve articles in all journals with MSC: 70.34

Additional Information

DOI: https://doi.org/10.1090/qam/198723
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society