Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

On stress functions in classical elasticity


Author: Marvin Stippes
Journal: Quart. Appl. Math. 24 (1966), 119-125
DOI: https://doi.org/10.1090/qam/99924
MathSciNet review: QAM99924
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] C. E. Weatherburn, Adv. Vector Anal., Bell and Sons Ltd., (1928)
  • [2] I. S. Sokolnikoff, Math. Theory of Elast., 2nd Ed., (1956)
  • [3] E. Fontaneau, Nou. Ann. de Math., Ser. 3, 9, p. 455 (1980)
  • [4] E. Fontaneau, Assoc. Fran. Avan. Sci., C. R. 21st Sess., p. 190 (1892)
  • [5] B. G. Galerkin, C. R. P., 190, p. 1047 (1930)
  • [6] C. Somigliana, Ann. di Mat., Ser. 2, 17, p. 37 (1889)
  • [7] C. Somigliana, Nuovo Cimento, Ser. 3, 36, p. 28 (1894)
  • [8] V. J. Boussinesq, Appl. des Pot., Paris (1885)
  • [9] E. Beltrami, R. Accad. Lincei Rend., Ser. 5, 1, p. 141 (1892)
  • [10] G. Reider, Abh. Braun. Wiss. Ges., 7, p. 4 (1960)
  • [11] M. E. Gurtin, A generalization of the Beltrami stress functions in continuum mechanics, Arch. Rational Mech. Anal. 13 (1963), 321–329. MR 0153154, https://doi.org/10.1007/BF01262700
  • [12] L. Donati, Mem. Accad. Bologna, Ser. IV, 9, p. 8 (1889)
  • [13] C. Truesdell, Arch. Rat. Mech. and Anal., 4, p. 1 (1960)
  • [14] G. Morera, R. Accad. Sci. Torino, 42, p. 676 (1906)$ ^{6}$
  • [15] V. Blokh, PMM, 14, p. 415 (1950)
  • [16] P. M. Naghdi and C. S. Hsu, On a representation of displacements in linear elasticity in terms of three stress functions, J. Math. Mech. 10 (1961), 233–245. MR 0137345
  • [17] Hermann Schaefer, Die Spannungsfunktionen des dreidimensionalen Kontinuums und des elastischen Körpers, Z. Angew. Math. Mech. 33 (1953), 356–362 (German, with English, French and Russian summaries). MR 0059144, https://doi.org/10.1002/zamm.19530331006
  • [18] Isaac Todhunter, A history of the theory of elasticity and the strength of materials, from Galilei to Lord Kelvin, Edited and completed by Karl Pearson, Dover Publications, Inc., New York, 1960. MR 0118011
  • [19] O. Tedone, A. Timpe, Encyklop. d. math. Wissensch., 4, 2, ii, (1907)


Additional Information

DOI: https://doi.org/10.1090/qam/99924
Article copyright: © Copyright 1966 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website